Design and Assembly of Rabbit Capsules for Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor

Approved for public release. Distribution is unlimited.

Sean Piela Richard H. Howard Annabelle G. Le Coq Kory D. Linton Ju Li

September 27, 2019

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reactor and Nuclear Systems Division

Design and Assembly of Rabbit Capsules for Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor

Sean Piela Richard Howard Annabelle G. Le Coq Kory D. Linton Ju Li

Date Published: September 27, 2019

NSUF Work Package #: UF-19OR021113 Work Package Manager: Kory Linton Milestone #: M3UF-19OR0211132

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-BATTELLE, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

CONTENTS	iii
LIST OF FIGURES	iv
LIST OF TABLES	v
ACKNOWLEDGMENTS	vi
SUMMARY	
ACRONYMS	viii
1. INTRODUCTION	1
2. EXPERIMENT DESIGN AND TEST MATRIX	1
2.1 EXPERIMENT DESIGN CONCEPT	2
2.2 CAPSULE THERMAL ANALYSIS	3
2.3 TEST MATRIX	12
3. RABBIT CAPSULE ASSEMBLY AND HFIR FABRICATION	13
4. SUMMARY AND CONCLUSIONS	15
5. WORKS CITED	16
APPENDIX A1: Capsule Thermal Reports	17
APPENDIX A2: Fabrication Request Sheets	33

LIST OF FIGURES

Figure 1.	Schematic showing transverse section view of HFIR core, reflector, and experimental	
po	ositions (not to scale).	2
	Section view of the GENTEN capsule design concept.	
	Predicted specimen selection, sorted into two rabbits	
Figure 4.	SS-J2 tensile specimen quadrant stacks in a GENTEN rabbit (isometric view)	7
	A typical mesh scheme for a single holder subassembly	
Figure 6.	All top middle specimens grouping (T4)	8
Figure 7.	Holder 3 top stack grouping (T3)	9
-	Holder 2 top stack grouping (T2)	
-	Holder 1 top stack grouping (T1)	
	. Parts layout for capsule JULI04	
-	. First partial parts layout for JULI02	
•	Second partial parts layout for JULI02	

LIST OF TABLES

Table 2-1.	GENTEN capsule design drawings	3
	Heat transfer boundary conditions	
	Material mechanical properties references	
	Heat generations rates	
	ANSYS parametric study results—TRRH position 6	
Table 2-6.	ANSYS parametric study results—HT position 7	11
Table 2-7.	Irradiation test matrix	12
Table A-1	Rabbit temperature description, TRRH	18
Table A-2	Rabbit temperature description, HT	26

ACKNOWLEDGMENTS

This research was sponsored by the Nuclear Science User Facilities Program of the US Department of Energy, Office of Nuclear Energy. Neutron irradiation in the High Flux Isotope Reactor is made possible by the Office of Basic Energy Sciences, DOE. The report was authored by UT-Battelle under contract number DE-AC05-00OR22725 with DOE. The different materials were provided by the Massachusetts Institute of Technology with the help of Kangpyo So, Rui Gao, So Yeon Kim, Mohammad Hasan Shahin, Myles Stapelberg, Samuel McAlpine, and by Oak Ridge National Laboratory staff members Niyanth Niyanth and Caleb Massey.

SUMMARY

The Massachusetts Institute of Technology has developed a manufacturing process for nanodispersion-strengthened materials that could be used as fuel cladding or reactor core materials. This report describes the design concept of irradiation capsules intended to accommodate specimens from such materials. The capsules will be irradiated in the flux trap of Oak Ridge National Laboratory's High Flux Isotope Reactor at three different fluence levels. The goal of this neutron irradiation is to investigate the effects of irradiation on those materials at the nanoscale. In addition, the report describes the irradiation test matrix and the successful assembly of the irradiation capsules.

ACRONYMS

CNT carbon nanotube GENTEN general tensile

HFIR High Flux Isotope Reactor

HT hydraulic tube

MIT Massachusetts Institute of Technology

O/C oxides/carbides
OD outside diameter

ORNL Oak Ridge National Laboratory

PTP peripheral target position RB removable beryllium

SiC silicon carbide

TRRH target rod rabbit holder VXF vertical experiment facility

1. INTRODUCTION

The Massachusetts Institute of Technology (MIT) is currently studying different materials with improved neutron irradiation resistance provided by nanodispersion that could be used as fuel cladding or reactor core material. The nanodispersion manufacturing technique uses 0, 1, or 2 dimensions (i.e., 0D, 1D, or 2D) nanodispersions, which correspond to particles, nanotubes, or sheets, respectively. The goal of this project is to perform neutron irradiation testing of several nanodispersion-strengthened materials to provide data on the mechanism of defects at the nanoscale.

The specimens from 13 MIT nanodispersion-strengthened materials will be inserted in rabbit capsules and irradiated at 3 different fluence levels in the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR). Each material is intended to be irradiated at each irradiation condition; all irradiations' design target temperature is of $300 \pm 50^{\circ}$ C with doses of approximately 0.7, 1.4, and 2.1 dpa (approximately one-half, one, and two cycles in HFIR, respectively). A total of six capsules will be irradiated (two capsules per irradiation condition). This report presents the design concept for the experiment, the test matrix, and the successful assembly of these capsules.

2. EXPERIMENT DESIGN AND TEST MATRIX

HFIR is a beryllium-reflected, pressurized, light-water-cooled and light-water-moderated flux traptype reactor located at ORNL. HFIR's core consists of aluminum-clad involute-fuel plates that currently use highly enriched ²³⁵U fuel to maintain a steady state power level of 85 MWth [1]. Most irradiation experiments are conducted in the flux trap—typically in small, uninstrumented rabbit capsules. As many as eight rabbits can be stacked axially inside a single peripheral target position (PTP) holder, a target rod rabbit holder (TRRH), or the hydraulic tube (HT). The target rod and peripheral target holders have orifices that establish capsule heat transfer boundary conditions for rabbits with respect to the reactor primary coolant. Positions are numbered in increasing order from the bottom to the top of a PTP or TRRH, so positions TRRH-4 and PTP-5, for instance, would be closest to the reactor's midplane.

Neutron and gamma radiation from HFIR fuel cause heating of experiment materials. This heating is accurately determined using neutronics models of the HFIR core and is used as an input to finite element thermal analyses that estimate experiment component temperatures during irradiation. Experiments in the flux trap are usually uninstrumented; passive silicon carbide (SiC) temperature monitors (thermometry) are used to estimate the irradiation temperature during post irradiation examination [2]. Detailed neutronic and thermal analyses are used to engineer rabbits in which the predicted and measured integral-irradiation temperatures are as similar as possible. Experiment designs generally use a small insulating gas gap between the capsule's internal components and external housing (the exterior of which is in contact with the reactor's primary coolant). The size of the gap and the type of fill gas (helium, neon, or argon) inside the experiment are chosen so that the heat generated in the experimental components passes through the gas gap and produces a specified steady-state temperature in the interior of the rabbit. The temperature drop through this gas gap is a function of the heat flux through the gap, thermal conductivity of the fill gas, and size of the gas gap. Each of these parameters is carefully selected and modeled to achieve the design temperature in an experiment.

ANSYS finite element analysis software is used to predict temperature distributions inside the experiments. These analyses use material-dependent heat generation rates (heat per unit mass), which were calculated from previously determined neutronics analyses (such as in [3]). Computer-aided design models are imported into ANSYS and used to perform thermal analyses and optimize gas-gap dimensions. Convection boundary conditions are applied to the outer surface of the housing. The heat generation rates vary in each irradiation location and as a function of axial distance from the reactor core midplane. As shown in Figure 1, there are multiple irradiation facility designations in the HFIR flux trap.

Figure 1. Schematic showing transverse section view of HFIR core, reflector, and experimental positions (not to scale).

2.1 EXPERIMENT DESIGN CONCEPT

The flexible tensile capsule design, referred to as the general tensile (GENTEN), consists of three specimen holders stacked axially within the rabbit housing, as shown in Figure 2.

Figure 2. Section view of the GENTEN capsule design concept.

The outer containment for the irradiation experiment is the rabbit capsule housing, which is directly cooled on the outer surface by HFIR's primary coolant. The specimens are placed in holders with outer diameters (ODs) that are optimized to create gas gaps to control temperature performance. These holders can either be Al-6061 or molybdenum, depending on the required target temperature. Centering tabs with a slightly larger diameter are machined into the holders to keep the assemblies centered inside the housing and to maintain a constant gas gap between the holder and the housing. Stainless steel spring pins are used in the GENTEN design to hold the internal specimen in contact with the holder's inner walls. The chevrons are used as filler pieces that form a rectangular coupon shape with the tensile specimens to produce a uniform thermal load. Stainless steel wave springs are placed on the ends of the internal assembly between the housing and the holders to minimize axial heat loss.

2.2 CAPSULE THERMAL ANALYSIS

For the Nuclear Science User Facilities MIT tensile irradiation experiments, the specimen temperature is controlled by the axial location, fill gas, and size of the gap between the holder and housing. The GENTEN capsule concept is an implementation of the ESTEEL model described in ORNL-TM-2018-872 [4]. Table 2-1 lists the engineering drawings that define the GENTEN capsules used in this irradiation campaign.

Identifier	Part no.	Title or description
X3E020977A633, Rev. 2		Target Capsule Housing Assembly [5]
X3E020977A634, Rev. C		Target Capsule Housing/ End Cap Detail [6]
S16-18-FUSSAM01, Rev. 1	7	Chevron-SSJ-M4PCCVN-MPC-Thermometry
510-16-FUSSAMU1, Rev. 1	3	SS-J2 specimen
CM08-L3-S17		Wave spring
91610A207		Spring pin
S18-39-GEN_TEN, Rev. 0	2	Holder and rabbit assembly

Table 2-1. GENTEN capsule design drawings

The various degrees of freedom for analysis inputs can create large numbers of single irradiation conditions. The GENTEN designs are intended to be easily deployed throughout the flux trap region, but explicitly analyzing all these cases is impractical. Therefore, a series of surface response calculations is performed on the capsule design. This approach effectively maps the target temperature design space for a given set of conditions (e.g., flux trap location-dependent heat generation rates, heat transfer boundary conditions, and holder ODs). The interface conditions between the capsules and HFIR coolant are listed in Table 2-2; these values are estimated in DAC-11-01-RAB03 [7].

Table 2-2. Heat transfer boundary conditions

Parameter	HFIR location	Value
Commentions has the surface of finish [7]	TRRH	47.1 kW/m². °C
Convective heat transfer coefficient [7]	HT	31.6 kW/m². °C
HEID as alant tomorphisms [7]	TRRH	52°C
HFIR coolant temperature [7]	HT	53°C

Material properties for this calculation are taken from the design and analysis calculations listed in Table 2-3. Some specimen materials are uncommonly irradiated or completely new; these are modeled with the mechanical properties of similar materials (under the "Equivalence" column in the table).

Table 2-3. Material mechanical properties references

Material	Equivalence	Reference document
Aluminum 6061		DAC-10-03-PROP_AL6061 [8]
Molybdenum	n/a	DAC-10-11-PROP_MOLY [9]
Grafoil		DAC-11-16-PROP_GRAFOIL [10]
Austenitic steel Fe-18Cr-8Ni-2W-1Ti	304 stainless steel	DAC-10-16-PROP_SS304 [11]
410 stainless steel	F82H	DAC-10-10-PROP_F82H [12]
304 stainless steel		DAC-10-16-PROP_SS304 [11]
SiC	n/a	DAC-10-06-PROP_SIC(IRR) [13]
Copper		DAC-12-06-PROP_COPPER [14]
Nickel	n/a	DAC-13-15-PROP_NICKEL [15]
OFRAC	FOOL	D. C. 10. 10. DDOD. E0011 [10]
Grade 91	F82H	DAC-10-10-PROP_F82H [12]
Helium	n/a	DAC-10-02-PROP_HELIUM [16]

The heat generation rates of the materials of construction (including specimens) are listed in Table 2-4, with reference documents specified. Some specimen materials are uncommonly irradiated or completely new; these are modeled with the heat generation rates of similar materials (under the "Equivalence" column in the table). Compound/blended materials composed overwhelmingly of one constituent are assumed to have the heat generation rate of that major constituent.

Table 2-4. Heat generations rates

Material	Equivalence	Mass-heating value (W/g)	Reference document
Aluminum 6061		32.5	
Molybdenum	n/a	43.3	
Grafoil		33.7	
Austenitic steel Fe-18Cr-8Ni-2W-1Ti	F82H	39.3	DAC-10-18-RAB02 [3]
410 stainless steel	F82H	39.3	
304 stainless steel	Гоип	39.3	
SiC	m/o	32.9	
Copper	n/a	44.2	DAC-15-16-CNLN01-R0 [17]
Nickel			
OFRAC	F82H	39.3	DAC-10-18-RAB02 [3]
Grade 91			

In addition to the approximation of specimens' mechanical and heat generation properties, the ultimate selection of materials to be irradiated was uncertain during the thermal analysis stage of the campaign. That is, it was not specifically known which proposed experimental materials would be supplied, and the quantities of the supplied experimental materials were also uncertain during the thermal analysis stage of this campaign. Using the best available estimates of the spectrum of specimens, the steady-state thermal description of the rabbits was modeled (in ANSYS) as shown in Figure 3. The 1-D heat equation was used as a guide for the sorting of the specimens. Figure 3 shows that the predicted selection of tensile specimens to be irradiated in this campaign required two near-identical rabbits. In the material column, an entry of 30 represents 304 stainless steel and of 41 represents 410 stainless steel (the two-character abbreviations for the two steels is used simply such that all materials are described by two characters (visual stylization)). The quadrant column indicates in which GENTEN in-holder stack the specimens in the rows to the left are placed, for modeling. The letters L, T, R, and B stand for left, top, right, and bottom, respectively, corresponding to the stacks in Figure 4; though the stacks in a holder are symmetric, when viewing Figure 4, for example, the stacks have the appearance of L,T,R and B.

In Figure 3, the place-in-stack column uses letters to indicate if the specimen in the same row is the outermost, middle, or innermost (O, M, or I respectively) slab in the quadrants of stacks shown in Figure 4. The fourth (and innermost) slab in the quadrants shown in Figure 4 is SiC thermometry. Inside the rabbits, specimens are braced by F82H steel chevrons, except for in Holder 1 (see Figure 3), which uses some copper chevrons. The quadrants (that is, stacks of specimens) are pressed into each of the four corners of the square cutout in the holders using a steel spring pin. The holders have raised standoff features to center the holder assembly within the housing (as mentioned previously). Grafoil is used to insulate the holder subassemblies from the cool bottom of the aluminum housing. Figure 5 depicts a representative finite element meshing of a holder subassembly for the campaign rabbits.

		#1	#2			
	#	Mat	erial	Quadrant	Place in Stack	Chevron
	1	Cu	Cu		0	
	2	Al	Al	L	M	Cu
Н	3	Cu	Cu		I	
О	4	Al	Al	Т	0	
1	5	Cu	Cu	•	M	Cu
d	6	Al	Al		I	
е	7	Cu	Cu		0	
r	8	Al	Al	R	M	Cu
	9	Cu	Cu		I	
1	10	Al	Al		0	
	11	30	30	١	M	30
	12	30	30	В	I	
	40		N.			
	13	Ni	Ni		0	20
	14	41 N:	41	L	M .	30
Н	15	Ni	Ni		I	
0	16	41 N:	30 N:	Т	0	20
ا	17	Ni	Ni		M	30
d	18	30	30 N:		I	
e r	19	Ni	Ni	_ D	0	20
•	20	30	30 N:	R	M	30
2	21	Ni	Ni		1	
_	22	41	41		0	20
	23	41	41	В	M	30
	24	41	41		I	
	25	Ni	Ni		0	
	26	Ni	Ni	L	М	30
Н	27	Ni	Ni	_	I	
0	28	41	41	т	О	
Ī	29	41	41	Т	М	30
d	30	41	41		ı	
е	31	Ni	Ni		0	
r	32	41	41	R	М	30
	33	Ni	Ni		ı	
3	34	41	41		О	
	35	41	41	_	М	30
	36	41	41	В	I	
172		D 11 -4 - 1		14	sorted into ty	11.4

Figure 3. Predicted specimen selection, sorted into two rabbits.

Figure 4. SS-J2 tensile specimen quadrant stacks in a GENTEN rabbit (isometric view).

Figure 5. A typical mesh scheme for a single holder subassembly.

Using ANSYS (with customizations [18]), a parametric study of the rabbit 1 in Figure 3 was performed. Only rabbit 1 was studied because the only difference between the rabbits is that a single tensile specimen is 410 steel in one rabbit but 304 steel in the other. These materials are modeled to have the same heat generation rates. At the irradiation temperature target (300 °C), simulation of rabbit 1 shows that the 304 steel and 410 steel average specimen temperatures are comparable. Since estimates of holder-averaged specimens' temperatures would not be significantly different in a simulation of rabbit 2 (less than 5 °C), rabbit 2 was not simulated. The fill gas in all simulations was helium, while the OD of the three holders varied from 9.15 to 9.45 mm. The parametric study was run for both TRRH and HT, which were modeled as sets of discrete axial positions with differing heat generation rates. Several regions inside a rabbit were selected for steady-state temperature reporting, and those selected regions are depicted in Figure 6, Figure 7, Figure 8, and Figure 9..

Figure 6. All top middle specimens grouping (T4)

Figure 7. Holder 3 top stack grouping (T3)

Figure 8. Holder 2 top stack grouping (T2)

Figure 9. Holder 1 top stack grouping (T1)

The results of a parametric study on holder sizes for TRRH position 6 and HT position 7 are recorded in Table 2-5 and Table 2-6, respectively. In these tables, a row is a rabbit permutation. The OD columns provide the ODs (in mm) of the three holders in a rabbit. The T columns contain temperatures (in °C) that correspond to the red slab regions specified in the preceding three figures. More details are provided in the complete ANSYS reports in APPENDIX A1: Capsule Thermal Reports.

Table 2-5. ANSYS parametric study results—TRRH position 6

Run	Position	OD1	OD2	OD3	T4	T3	T2	T1
Kuii	1 OSITIOII	mm	mm	mm	°C	°C	°C	°C
61	6	9.30	9.30	9.30	250	248	258	242
62	6	9.15	9.30	9.30	276	249	268	306
63	6	9.45	9.30	9.30	215	246	241	153
64	6	9.30	9.15	9.30	275	258	311	252
65	6	9.30	9.45	9.30	210	230	173	223
66	6	9.30	9.30	9.15	276	313	268	243
67	6	9.30	9.30	9.45	215	159	242	240
68	6	9.18	9.18	9.18	320	317	328	310
69	6	9.42	9.18	9.18	264	313	299	177
70	6	9.18	9.42	9.18	255	284	201	275
71	6	9.42	9.42	9.18	214	283	190	165
72	6	9.18	9.18	9.42	264	184	298	306
73	6	9.42	9.18	9.42	210	182	269	175
74	6	9.18	9.42	9.42	214	172	190	274
75	6	9.42	9.42	9.42	173	171	179	165

Table 2-6. ANSYS parametric study results—HT position 7

Run	Position	OD1	OD2	OD3	T4	T3	T2	T1
Ruii	TOSITION	mm	mm	mm	°C	°C	°C	°C
61	7	9.30	9.30	9.30	252	249	259	243
62	7	9.15	9.30	9.30	277	250	270	307
63	7	9.45	9.30	9.30	217	247	243	156
64	7	9.30	9.15	9.30	276	260	311	254
65	7	9.30	9.45	9.30	212	231	176	225
66	7	9.30	9.30	9.15	277	313	270	245
67	7	9.30	9.30	9.45	217	162	243	242
68	7	9.18	9.18	9.18	320	317	328	311
69	7	9.42	9.18	9.18	266	313	300	180
70	7	9.18	9.42	9.18	256	284	204	277
71	7	9.42	9.42	9.18	216	283	193	168
72	7	9.18	9.18	9.42	265	186	299	307
73	7	9.42	9.18	9.42	212	184	271	178
74	7	9.18	9.42	9.42	216	174	193	276
75	7	9.42	9.42	9.42	176	173	182	168

Tables like the preceding two were generated for all axial locations in the TRRH and HT facilities, but locations 6 and 7 were, respectively, selected for reporting in this document as these are the intended positions for the rabbits. Because the tables include several internal temperature predictions for all positions of the two irradiation facilities, when available irradiation positions in TRRH or HT are specified, a set of three holder ODs that correspond most closely to a specified irradiation temperature can be selected from the tables. T4, which is the average temperature in the middle position in the stack in the top quadrant provides the fairest representation of the thermal performance of the rabbits. The information in the complete set of tables also allows for a contingency plan of irradiation positions, based on specified holder sizes, in the event the targeted irradiation facility position is occupied. That is, alternate TRRH and HT positions can be chosen for an already-built set of holder ODs to achieve a T4 (i.e., average middle specimen stack temperature) similar to the specified design temperature, allowing for dynamic loading of rabbits in a HFIR cycle based on campaign priority, position availability, and design temperature flexibility.

Note that the results shown in Table 2-5 and Table 2-6 are based on a specimen selection that is slightly different from those used in Figure 3 and Table 2-7. As mentioned above, the ultimate selection of materials supplied for irradiation was uncertain, and the actual selection differed from what was expected when holders were sized and ordered. Follow-up finite element thermal analyses with the specimen types and numbers shown in Figure 3 have shown that changes in T4 predictions were on the order of fractions of percentages (about 1 °C), meaning the design temperature prediction was still well within the allowable temperature range for the campaign (300 °C \pm 50 °C). In Table 2-5 and Table 2-6, Run 68 indicates the predicted middle specimen average temperature (T4) for the set of three identical holder OD sizes selected (3 x 9.18 mm).

2.3 TEST MATRIX

Table 2-7 summarizes the different specimen types and numbers that were ultimately produced for irradiation. Fifteen different materials will be studied, including thirteen materials provided by MIT and two materials provided by ORNL. MIT materials include prototype metal with and without nanodispersions (1D carbon nanotube (CNT) or 2D graphene sheets): aluminum, aluminum + 1D CNT, Fe-16Cr-2Si steel, Fe-20Cr-2Si steel, copper, copper + 2D graphene, single crystal nickel, Steel 1 (martensitic steel, Fe-9Cr-1W-0.1C-0.4Ti), Steel 1 + oxides/carbides (O/C), Steel 2 (austenitic steel, Fe-18Cr-8Ni-2W-1Ti), Steel 2 + O/C, nickel, nickel + 1D CNT. OFRAC and Grade 91 materials were provided by ORNL. Each material is planned to be irradiated at each irradiation condition; all irradiations' design target temperature is of $300 \pm 50^{\circ}$ C with doses of approximately 0.7, 1.4, and 2.1 dpa (approximately one-half, one, and two cycles in HFIR, respectively). A total of six capsules will be irradiated (two capsules per irradiation condition).

Table 2-7. Irradiation test matrix

Capsule ID	JULI01	JULI02	JULI03	JULI04	JULI05	JULI06	
Irradiation temperature (°C)		300					
Dose (dpa)	0	.7	1	.4	2	.1	
Materials		Nui	mber of SS	SJ2 specim	ens		Total
Al	3	2	3	2	3	2	15
Al + CNT	3	2	3	2	3	2	15
Cu	3	1	3	1	3	1	12
Cu + graphene	3	1	3	1	3	1	12
Fe-16Cr-2Si	2	3	2	3	2	3	15
Fe-20Cr-2Si	2	3	2	3	2	3	15
Grade 91	3	3	3	3	3	3	18
Ni	2	3	2	3	2	3	15
Ni + CNT	3	2	3	2	3	2	15
OFRAC	0	3	0	3	0	3	9
Single crystal Ni	2	3	2	3	2	3	15
Steel 1	3	2	3	2	3	2	15
Steel 1 + oxide/carbide	2	3	2	3	2	3	15
Steel 2	2	3	2	3	2	3	15
Steel 2 + oxide/carbide	3	2	3	2	3	2	15
Total number of specimens	36	36	36	36	36	36	216

3. RABBIT CAPSULE ASSEMBLY AND HFIR FABRICATION

Six rabbit capsules, with IDs JULI01 to JULI06, were assembled. Examples of capsule complete parts layout are given by: Figure 10, Figure 11 and Figure 12. The details of each capsule components are shown on the capsule fabrication request sheets provided in Appendix A2. In total, 87 high-resolution digital images of each capsule's components were taken; these are stored electronically, for record keeping purposes.

All the capsule components were dimensionally inspected and cleaned according to HFIR-approved procedures, drawings, and sketches. After assembly of the internal components, the rabbit housings' end caps were welded to the housings using an electron beam weld. The capsules were then placed inside sealed chambers that were evacuated and backfilled with helium three times to ensure a pure environment. The chambers were placed inside a glove box, which was also evacuated and backfilled with helium. Each rabbit had a small hole in the bottom of the housing that was sealed using a gas tungsten arc welding procedure. All welds passed visual examination. Each capsule was then sent for nondestructive examination, which included a helium leak test, hydrostatic compression at 7.136 MPa mass comparisons before and after hydrostatic compression to ensure no water penetrated the capsule housing, and a final post compression helium leak test. All rabbits passed the helium leak testing and hydrostatic compression.

Figure 10. Parts layout for capsule JULI04.

Figure 11. First partial parts layout for JULI02

Figure 12. Second partial parts layout for JULI02

4. SUMMARY AND CONCLUSIONS

This work summarizes the capsule design concept and irradiation test matrix for six rabbit capsules, which were successfully assembled and delivered to HFIR. Each rabbit contains tensile specimens from different prototype metals with and without nanodispersion features. The specimens will be evaluated post irradiation to investigate the effects of irradiation on the materials' microstructures and mechanical properties. The rabbits were successfully assembled, welded, evaluated, according HFIR quality assurance. Pictures of the rabbit assembly process are included in this report. Ultimately, the results of this project will be coupled with modeling to understand the mechanism of defects evolution at interfaces in the nanodispersion-strengthened materials under neutron irradiation and will impact the development of new radiation-resistant materials.

5. WORKS CITED

- [1] Oak Ridge National Laboratory, "High Flux Isotope Reactor Technical Parameters," [Online]. Available: http://neutrons.ornl.gov/hfir/parameters. [Accessed 27 July 2016].
- [2] A. Campbell, W. Porter, Y. Katoh and L. Snead, "Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature," *Nuclear Instruments and Methods in Physics Research B*, vol. 370, pp. 49-58, 2016.
- [3] J. L. McDuffee, "Heat Generation Rates for Various Rabbit Materials in the Flux Trap of HFIR," DAC-10-18-RAB02, Rev.0, 2011.
- [4] R. H. Howard and K. R. Smith, "Development of a Flexible Design for Irradiation of Miniature Tensile and Charpy Test Specimens in the High Flux Isotope Reactor," ORNL/TM-2018/872, 2018.
- [5] Oak Ridge National Laboratory, NEIT, "Target Capsule Housing Assembly," X3E020977A633, Rev. 2, 2018.
- [6] Oak Ridge National Laboratory, NEIT, "Target Capsule Housing / End Cap Detail," X3E020977A634, Rev. C, 2018.
- [7] J. L. McDuffee, "Heat Transfer Coefficients and Bulk Temperatures for HFIR Rabbit Facilities," DAC-11-01-RAB03, Rev. 0, 2011.
- [8] J. L. McDuffee, "Thermophysical Properties for AL6061," DAC-10-13-PROP_AL6061, Rev. 2, 2013.
- [9] J. L. McDuffee, "Thermophysical Properties for Molybdenum," DAC-10-11-PROP_MOLY, Rev. 1, 2013.
- [10] J. L. McDuffee, "Thermophysical Properties for Flexible Graphite," DAC-11-16_PROP_GRAFOIL Rev. 0. 2013.
- [11] J. L. McDuffee, "Thermophysical properties for the 304 Stainless Steel and other 300-series stainless steels," DAC-10-16-PROP_SS304 Rev. 1, 2013.
- [12] R. H. Howard, "Thermophysical Properties for F82H Steel," DAC-10-10-PROP_F82H, 2016.
- [13] J. L. McDuffee, "Thermophysical Properties for Irradiated SiC," DAC-10-06-PROP_SIC(IRR), Rev. 2, 2013.
- [14] J. L. McDuffee, "Thermophysical Properties for Copper," DAC-12-06-PROP_COPPER, Rev.0, 2012.
- [15] R. H. Howard, "Thermophysical Properties of Nickel," DAC-13-15-PROP NICKEL, Rev.1, 2014.
- [16] J. L. McDuffee, "Thermophysical Properties for Helium," DAC-10-02-PROP_HELIUM, Rev.0, 2010.
- [17] C. Petrie, "Thermal Design Analysis for CNL Non-Optimized Spring Specimen Rabbits," DAC-15-16-CNLN01, Rev.0, 2015.
- [18] J. L. McDuffee, "Solve Macros for ANSYS Finite Element Models With Contact Elements," Oak Ridge National Laboratory, Oak Ridge, TN, 2016.

APPENDIX A1: CAPSULE THERMAL REPORTS

CONTENTS

Table A-1.	Rabbit temperature description,	TRRH	18
Table A-2.	Rabbit temperature description,	HT	26

This appendix contains two customized-ANSYS-generated thermal descriptions for the model rabbit at TRRH position 6 and HT position 7, using the holder sizes selected for the actual rabbits. Note that while 9.18 mm OD holders were chosen, that measurement was rounded up from the 9.178 mm (for practicality of manufacture purposes).

Table A-1. Rabbit temperature description, TRRH

Bulk coolant temperature = 53.0 °C
Holder OD1 = 9.178 mm
Holder OD2 = 9.178 mm
Holder OD3 = 9.178 mm
HFIR HT Axial position 7.
HE fill gas

HEAT GENERATION

		Heat Gen.	Heat	Load
_		@Midplane	@Midplane	@Location
Part	Material	(W/kg)	(W)	(W)
1) ENDCAP	AL-6061	32500.	20.2	15.2
3) GRAFOIL.1	GRAFOIL	33700.	0.2	0.2
4) GRAFOIL.2	GRAFOIL	33700.	0.2	0.2
5) GRAFOIL.3	GRAFOIL	33700.	0.2	0.2
6) HOLDER.1	AL-6061	32500.	38.8	33.7
8) ROLLPIN.1	SS304	39300.	10.1	8.7
TENSILE_Cu.1	Copper	44200.	8.7	7.5
10) TENSILE_Al.1	AL-6061	32500.	1.9	1.7
11) CHEVRON_Cu.1	Copper	44200.	5.6	4.9
12) CHEVRON_Cu.2	Copper	44200.	5.6	4.9
13) TENSILE_Cu.2	Copper	44200.	8.7	7.5
14) TENSILE_A1.2	AL-6061	32500.	1.9	1.7
15) TENSILE_Cu.3	Copper	44200.	8.7	7.5
16) CHEVRON_Cu.3	Copper	44200.	5.6	4.9
17) CHEVRON_Cu.4	Copper	44200.	5.6	4.9
18) TENSILE_A1.3	AL-6061	32500.	1.9	1.7
19) TENSILE_Cu.4	Copper	44200.	8.7	7.5
20) TENSILE_A1.4	AL-6061	32500.	1.9	1.7
21) CHEVRON_Cu.5	Copper	44200.	5.6	4.9
22) CHEVRON_Cu.6	Copper	44200.	5.6	4.9
23) TENSILE_Cu.5	Copper	44200.	8.7	7.5
24) TENSILE_A1.5	AL-6061	32500.	1.9	1.7
25) TENSILE_30.1	SS304	39300.	6.9	6.0
26) CHEVRON_30.1	SS304	39300.	4.5	3.9
27) CHEVRON_30.2	SS304	39300.	4.5	3.9
28) TENSILE_30.2	SS304	39300.	6.9	6.0
29) THERMOMETRY.1	SiC(Irr)	32900.	3.0	2.6
30) THERMOMETRY.2	SiC(Irr)	32900.	3.0	2.6
31) THERMOMETRY.3	SiC(Irr)	32900.	3.0	2.6
32) THERMOMETRY.4	SiC(Irr)	32900.	3.0	2.6
33) ROLLPIN.2	SS304	39300.	10.1	8.4
34) TENSILE_Ni.1	Nickel	39300.	7.7	6.4
35) TENSILE_41.1	F82H	39300.	6.8	5.6
36) CHEVRON_30.3	SS304	39300.	4.5	3.7
37) CHEVRON_30.4	SS304	39300.	4.5	3.7
38) TENSILE_Ni.2	Nickel F82H	39300.	7.7 6.8	6.4
39) TENSILE_41.2		39300.		5.6
40) TENSILE_Ni.3	Nickel	39300.	7.7	6.4
41) CHEVRON_30.5	SS304 SS304	39300.	4.5 4.5	3.7 3.7
42) CHEVRON_30.6 43) TENSILE 30.3	SS304 SS304	39300. 39300.	6.9	5.7
45) ICHSICE_30.5	49066	. 00000	0.9	3.7

TEMPERATURE DESIGN SOLUTION GENERAL METAL TENSILE

BOUNDARY CONDITIONS

Heat transfer coefficient = 47100. W/m²·°C Bulk coolant temperature = 52.0 °C Holder OD1 = 9.178 mm Holder OD2 = 9.178 mm Holder OD3 = 9.178 mm

HFIR TRRH Axial position 6. HE fill gas

HEAT GENERATION

		Heat Gen.	Heat	Load
		@Midplane	@Midplane	<pre>@Location</pre>
Part	Material	(W/kg)	(W)	(W)
1) ENDCAP	AL-6061	32500.	20.2	15.4
3) GRAFOIL.1	GRAFOIL	33700.	0.2	0.2
4) GRAFOIL.2	GRAFOIL	33700.	0.2	0.2
5) GRAFOIL.3	GRAFOIL	33700.	0.2	0.2
6) HOLDER.1	AL-6061	32500.	38.8	34.0
8) ROLLPIN.1	SS304	39300.	10.1	8.8
9) TENSILE Cu.1	Copper	44200.	8.7	7.6
10) TENSILE_A1.1	AL-6061	32500.	1.9	1.7
11) CHEVRON Cu.1	Copper	44200.	5.6	4.9
12) CHEVRON_Cu.2	Copper	44200.	5.6	4.9
13) TENSILE Cu.2	Copper	44200.	8.7	7.6
14) TENSILE_A1.2	AL-6061	32500.	1.9	1.7
15) TENSILE_Cu.3	Copper	44200.	8.7	7.6
16) CHEVRON_Cu.3	Copper	44200.	5.6	4.9
17) CHEVRON_Cu.4	Copper	44200.	5.6	4.9
18) TENSILE_A1.3	AL-6061	32500.	1.9	1.7
19) TENSILE_Cu.4	Copper	44200.	8.7	7.6
20) TENSILE_A1.4	AL-6061	32500.	1.9	1.7
21) CHEVRON_Cu.5	Copper	44200.	5.6	4.9
22) CHEVRON_Cu.6	Copper	44200.	5.6	4.9
23) TENSILE_Cu.5	Copper	44200.	8.7	7.6
24) TENSILE_A1.5	AL-6061	32500.	1.9	1.7
25) TENSILE_30.1	SS304	39300.	6.9	6.1
26) CHEVRON_30.1	SS304	39300.	4.5	4.0
27) CHEVRON_30.2	SS304	39300.	4.5	4.0
28) TENSILE_30.2	SS304	39300.	6.9	6.1
29) THERMOMETRY.1	SiC(Irr)	32900.	3.0	2.7
30) THERMOMETRY.2	SiC(Irr)	32900.	3.0	2.7
31) THERMOMETRY.3	SiC(Irr)	32900.	3.0	2.7
32) THERMOMETRY.4	SiC(Irr)	32900.	3.0	2.7
33) ROLLPIN.2	SS304	39300.	10.1	8.5
34) TENSILE_Ni.1	Nickel	39300.	7.7	6.5
35) TENSILE_41.1	F82H	39300.	6.8	5.7
36) CHEVRON_30.3	SS304	39300.	4.5	3.8
37) CHEVRON_30.4	SS304	39300.	4.5	3.8
38) TENSILE_Ni.2	Nickel	39300.	7.7	6.5
39) TENSILE_41.2	F82H	39300.	6.8	5.7
40) TENSILE_Ni.3	Nickel	39300.	7.7	6.5

41) CHEVRON_30.5	SS304	39300.	4.5	3.8
42) CHEVRON_30.6	SS304	39300.	4.5	3.8
43) TENSILE_30.3	SS304	39300.	6.9	5.8
44) TENSILE_Ni.4	Nickel	39300.	7.7	6.5
45) TENSILE_30.4	SS304	39300.	6.9	5.8
46) CHEVRON_30.7	SS304	39300.	4.5	3.8
47) CHEVRON_30.8	SS304	39300.	4.5	3.8
48) TENSILE_Ni.5	Nickel	39300.	7.7	6.5
49) TENSILE_41.3	F82H	39300.	6.8	5.7
50) TENSILE_41.4	F82H	39300.	6.8	5.7
51) CHEVRON_30.9	SS304	39300.	4.5	3.8
52) CHEVRON_30.10	SS304	39300.	4.5	3.8
53) TENSILE_41.5	F82H	39300.	6.8	5.7
54) THERMOMETRY.5	SiC(Irr)	32900.	3.0	2.6
55) THERMOMETRY.6	SiC(Irr)	32900.	3.0	2.6
56) THERMOMETRY.7	SiC(Irr)	32900.	3.0	2.6
57) THERMOMETRY.8	SiC(Irr)	32900.	3.0	2.6
58) ROLLPIN.3	SS304	39300.	10.1	8.1
59) TENSILE_Zr.1	Nickel	39300.	7.7	6.1
60) TENSILE_Zr.2	Nickel	39300.	7.7	6.1
61) CHEVRON 30.11	SS304	39300.	4.5	3.6
62) CHEVRON 30.12	SS304	39300.	4.5	3.6
63) TENSILE Zr.3	Nickel	39300.	7.7	6.1
64) TENSILE_41.6	F82H	39300.	6.8	5.4
65) TENSILE_41.7	F82H	39300.	6.8	5.4
66) CHEVRON_30.13	SS304	39300.	4.5	3.6
67) CHEVRON_30.14	SS304	39300.	4.5	3.6
68) TENSILE_41.8	F82H	39300.	6.8	5.4
69) TENSILE_Zr.4	Nickel	39300.	7.7	6.1
70) TENSILE_41.9	F82H	39300.	6.8	5.4
71) CHEVRON_30.15	SS304	39300.	4.5	3.6
72) CHEVRON_30.16	SS304	39300.	4.5	3.6
73) TENSILE_Zr.5	Nickel	39300.	7.7	6.1
74) TENSILE_41.10	F82H	39300.	6.8	5.4
75) TENSILE_41.11	F82H	39300.	6.8	5.4
76) CHEVRON_30.17	SS304	39300.	4.5	3.6
77) CHEVRON_30.18	SS304	39300.	4.5	3.6
78) TENSILE_41.12	F82H	39300.	6.8	5.4
79) THERMOMETRY.9	SiC(Irr)	32900.	3.0	2.4
80) THERMOMETRY.10	SiC(Irr)	32900.	3.0	2.4
81) THERMOMETRY.11	SiC(Irr)	32900.	3.0	2.4
82) THERMOMETRY.12	SiC(Irr)	32900.	3.0	2.4
83) SUPPORT_DISK.1	Moly	43300.	1.5	1.3
84) SUPPORT_DISK.2	Moly	43300.	1.5	1.2
85) HOLDER.2	AL-6061	32500.	38.8	32.6
87) HOLDER.3	AL-6061	32500.	38.8	31.1
89) HOUSING	AL-6061	32500.	139.3	117.5
		52500.	139.3	117.5
			699.8	586.1
			055.0	500.1

CAPSULE TEMPERATURE SUMMARY

Name	Material	Tavg	Tmin	Tmax	T.025	T.975
1) ENDCAP	AL-6061	81.	79.	83.	79.	82.
3) GRAFOIL.1	GRAFOIL	61.	60.	61.	60.	61.
4) GRAFOIL.2	GRAFOIL	61.	61.	62.	61.	62.

5) GRAFOIL.3	GRAFOIL	62.	61.	62.	61.	62.
6) HOLDER.1	AL-6061	291.	282.	295.	288.	294.
8) ROLLPIN.1	SS304	376.	368.	384.	370.	381.
9) TENSILE_Cu.1	Copper	310.	308.	313.	309.	313.
10) TENSILE_Al.1	AL-6061	319.	314.	322.	315.	321.
11) CHEVRON_Cu.1	Copper	329.	327.	329.	328.	329.
12) CHEVRON_Cu.2	Copper	311.	310.	311.	310.	311.
13) TENSILE Cu.2	Copper	328.	324.	330.	325.	330.
14) TENSILE_A1.2	AL-6061	304.	302.	308.	302.	307.
15) TENSILE_Cu.3	Copper	316.	312.	318.	313.	318.
16) CHEVRON_Cu.3	Copper	326.	325.	327.	326.	327.
17) CHEVRON Cu.4	Copper	310.	309.	310.	309.	310.
-						
18) TENSILE_A1.3	AL-6061	319.	313.	323.	314.	323.
<pre>19) TENSILE_Cu.4</pre>	Copper	311.	309.	314.	309.	314.
20) TENSILE A1.4	AL-6061	320.	315.	323.	316.	322.
		329.	328.			330.
21) CHEVRON_Cu.5	Copper					
22) CHEVRON_Cu.6	Copper	312.	311.	312.	311.	312.
23) TENSILE_Cu.5	Copper	329.	325.	331.	326.	331.
24) TENSILE_A1.5	AL-6061	307.	303.	312.	304.	311.
25) TENSILE_30.1	SS304	323.	305.	333.		331.
26) CHEVRON_30.1	SS304	333.	317.	343.	324.	341.
27) CHEVRON 30.2	SS304	311.	303.	322.	306.	319.
28) TENSILE 30.2	SS304	334.	303.	348.	313.	345.
29) THERMOMETRY.1	SiC(Irr)	339.	297.	370.	307.	363.
30) THERMOMETRY.2	SiC(Irr) SiC(Irr)	332.	298.	363.	306.	353.
31) THERMOMETRY.3	SiC(Irr)	327.	296.	362.	305.	352.
	SiC(Irr)		298.	365.		355.
32) THERMOMETRY.4						
33) ROLLPIN.2	SS304	388.	382.	395.	384.	392.
34) TENSILE_Ni.1	Nickel	315.	309.	321.	310.	319.
35) TENSILE 41.1	F82H	329.	310.	337.	316.	336.
· =			319.			
36) CHEVRON_30.3	SS304	335.			326.	343.
37) CHEVRON_30.4	SS304	314.	307.	324.	309.	321.
38) TENSILE_Ni.2	Nickel	339.	319.	347.	325.	346.
39) TENSILE_41.2	F82H	315.	307.	323.	310.	321.
_						
40) TENSILE_Ni.3	Nickel	331.	315.	338.	319.	337.
41) CHEVRON_30.5	SS304	336.	320.	347.	327.	344.
42) CHEVRON_30.6	SS304	314.	307.	324.	309.	321.
43) TENSILE_30.3	SS304	340.	306.	354.	318.	351.
44) TENSILE_Ni.4	Nickel	315.	309.	321.	310.	319.
45) TENSILE_30.4	SS304	330.	307.	340.	315.	338.
46) CHEVRON_30.7	SS304	336.	318.	345.	327.	343.
47) CHEVRON_30.8	SS304	314.	307.	325.	309.	322.
48) TENSILE_Ni.5	Nickel	340.	320.	350.	326.	349.
49) TENSILE_41.3	F82H	314.	305.	321.	308.	319.
50) TENSILE_41.4	F82H	329.	310.	337.	315.	335.
51) CHEVRON_30.9	SS304	335.	319.	344.	326.	342.
_						
52) CHEVRON_30.10	SS304	313.	306.	323.	308.	320.
53) TENSILE_41.5	F82H	337.	309.	349.	318.	347.
54) THERMOMETRY.5	SiC(Irr)	342.	298.	375.	308.	367.
						367.
55) THERMOMETRY.6	SiC(Irr)		299.	377.	309.	
56) THERMOMETRY.7	SiC(Irr)	344.	298.	378.	309.	369.
57) THERMOMETRY.8	SiC(Irr)	344.	298.	377.	309.	368.
58) ROLLPIN.3	SS304	377.	372.	384.	374.	382.
•						
59) TENSILE_Zr.1	Nickel	309.	304.	315.	305.	314.
60) TENSILE_Zr.2	Nickel	323.	309.	329.	313.	329.
61) CHEVRON_30.11	SS304	328.	313.	338.	320.	336.
62) CHEVRON_30.12	SS304	308.	301.	318.	303.	315.
63) TENSILE_Zr.3	Nickel	331.	313.	340.	319.	339.
64) TENSILE_41.6	F82H	308.	299.	315.	301.	313.
65) TENSILE_41.7	F82H	322.	304.	331.	309.	329.
-	-					

66) CHEVRON_30.13	SS304	328.	313.	338.	319.	335.
67) CHEVRON_30.14	SS304	307.	300.	317.	302.	314.
68) TENSILE_41.8	F82H	331.	303.	343.	311.	341.
69) TENSILE_Zr.4	Nickel	308.	302.	313.	303.	312.
70) TENSILE_41.9	F82H	322.	303.	330.	309.	328.
71) CHEVRON_30.15	SS304	327.	311.	337.	318.	335.
72) CHEVRON_30.16	SS304	307.	300.	317.	302.	313.
73) TENSILE_Zr.5	Nickel	331.	311.	340.	317.	338.
74) TENSILE_41.10	F82H	308.	299.	316.	301.	314.
75) TENSILE_41.11	F82H	322.	304.	331.	309.	330.
76) CHEVRON_30.17	SS304	327.	312.	337.	318.	335.
77) CHEVRON_30.18	SS304	318.	306.	326.	311.	324.
78) TENSILE_41.12	F82H	331.	304.	342.	312.	340.
79) THERMOMETRY.9	SiC(Irr)	336.	293.	366.	305.	358.
80) THERMOMETRY.10	SiC(Irr)	335.	293.	368.	303.	358.
81) THERMOMETRY.11	SiC(Irr)	335.	291.	368.	302.	359.
82) THERMOMETRY.12	SiC(Irr)	335.	292.	367.	302.	358.
83) SUPPORT_DISK.1	Moly	309.	287.	328.	294.	326.
84) SUPPORT_DISK.2	Moly	287.	273.	294.	280.	293.
85) HOLDER.2	AL-6061	291.	282.	295.	288.	294.
87) HOLDER.3	AL-6061	286.	276.	290.	283.	289.
89) HOUSING	AL-6061	58.	54.	64.	54.	60.

PROPERTY SUMMARY AT THE AVERAGE PART TEMPERATURE

Name		Material	Thermal Cond. (W/m⋅ºC)	Thermal Exp. Coeff. (µm/m·°C)	Emis ()
1)	ENDCAP	AL-6061	169.124	0.00	0.050
,	GRAFOIL.1	GRAFOIL	38.000	1.00	0.500
•	GRAFOIL.2	GRAFOIL	38.000	1.00	0.500
	GRAFOIL.3	GRAFOIL	38.000	1.00	0.500
6)	HOLDER.1	AL-6061	176.000	25.35	0.056
8)	ROLLPIN.1	SS304	20.484	0.00	0.143
9)	TENSILE_Cu.1	Copper	380.160	0.00	0.032
10)	TENSILE_Al.1	AL-6061	176.000	0.00	0.058
11)	CHEVRON_Cu.1	Copper	378.905	0.00	0.032
12)	CHEVRON_Cu.2	Copper	380.138	0.00	0.032
13)	TENSILE_Cu.2	Copper	378.955	0.00	0.032
14)	TENSILE_A1.2	AL-6061	176.000	0.00	0.057
15)	TENSILE_Cu.3	Copper	379.795	0.00	0.032
16)	CHEVRON_Cu.3	Copper	379.050	0.00	0.032
17)	CHEVRON_Cu.4	Copper	380.220	0.00	0.032
18)	TENSILE_A1.3	AL-6061	176.000	0.00	0.058
19)	TENSILE_Cu.4	Copper	380.097	0.00	0.032
20)	TENSILE_A1.4	AL-6061	176.000	0.00	0.058
21)	CHEVRON_Cu.5	Copper	378.854	0.00	0.032
22)	CHEVRON_Cu.6	Copper	380.079	0.00	0.032
23)	TENSILE_Cu.5	Copper	378.886	0.00	0.032
24)	TENSILE_A1.5	AL-6061	176.000	0.00	0.057
	TENSILE_30.1	SS304	19.747	0.00	0.143
26)	CHEVRON_30.1	SS304	19.888	0.00	0.143
27)	CHEVRON_30.2	SS304	19.581	0.00	0.143
28)	TENSILE_30.2	SS304	19.902	0.00	0.143
,	THERMOMETRY.1	SiC(Irr)	4.986		
	THERMOMETRY.2	SiC(Irr)	4.988		
31)	THERMOMETRY.3	SiC(Irr)	4.989	3.34	0.900

32) THERMOMETRY.4	SiC(Irr)	4.987	3.36	0.900
33) ROLLPIN.2	SS304	20.653	0.00	0.143
34) TENSILE_Ni.1	Nickel	66.412	0.00	0.185
35) TENSILE_41.1	F82H	33.753	11.33	0.143
36) CHEVRON_30.3	SS304	19.917	0.00	0.143
37) CHEVRON_30.4	SS304	19.618	0.00 0.00	0.143
38) TENSILE_Ni.2	Nickel	64.945	0.00	0.185
39) TENSILE_41.2	F82H	33.763	11.2/	
40) TENSILE_Ni.3	Nickel			0.185
41) CHEVRON_30.5	SS304	19.930		0.143
42) CHEVRON_30.6	SS304	19.620	0.00	0.143
43) TENSILE_30.3	SS304	19.980	0.00	0.143
44) TENSILE_Ni.4	Nickel	66.399	0.00	0.185
45) TENSILE_30.4	SS304	19.849		0.143
46) CHEVRON_30.7	SS304	19.924	0.00	0.143
47) CHEVRON_30.8	SS304	19.619	0.00	0.143
48) TENSILE_Ni.5	Nickel	64.846	0.00	
49) TENSILE_41.3	F82H	33.787		0.143
50) TENSILE_41.4	F82H	33.754		0.143
51) CHEVRON_30.9	SS304	19.910	0.00 0.00	0.143
52) CHEVRON_30.10	SS304 SS304	19.607	0.00	0.143
53) TENSILE_41.5	FOZII		11.37	
54) THERMOMETRY.5	SiC(Irr)	4.985	3.39	0.900
55) THERMOMETRY.6	SiC(Irr) SiC(Irr) SiC(Irr)	4.985	3.39	0.900
56) THERMOMETRY.7	SiC(Irr)	4.984	3.39	0.900
	SiC(Irr)	4.984	3.39	0.900
58) ROLLPIN.3				0.143
59) TENSILE_Zr.1	Nickel			0.185
60) TENSILE_Zr.2	Nickel			0.185
61) CHEVRON_30.11	SS304	19.820	0.00	0.143 0.143
62) CHEVRON_30.12	SS304	19.533	0.00	0.143
63) TENSILE_Zr.3	Nickel			
64) TENSILE_41.6	F82H	33.800		
65) TENSILE_41.7	F82H	33.768	11.30	0.143
66) CHEVRON_30.13	SS304	19.816	0.00 0.00	0.143
67) CHEVRON_30.14	SS304	19.519 33.750	11 74	0.143
68) TENSILE_41.8	F82H			
69) TENSILE_Zr.4 70) TENSILE_41.9	Nickel	66.861		
71) CHEVRON 30.15	F82H SS304	33.769 19.805	11.30 0.00	0.143
71) CHEVRON_30.16	SS304	19.514	0.00	0.143
73) TENSILE_Zr.5	Nickel	65.395	0.00	0.145
73) TENSILE_27.3 74) TENSILE_41.10	F82H	33.800	11.23	0.143
75) TENSILE_41.11	F82H	33.768	11.30	0.143
76) CHEVRON 30.17	SS304	19.805	0.00	0.143
77) CHEVRON_30.17	SS304	19.679	0.00	0.143
78) TENSILE_41.12	F82H	33.749	11.34	0.143
79) THERMOMETRY.9	SiC(Irr)	4.987	3.37	0.900
80) THERMOMETRY.10	SiC(Irr)	4.987	3.37	0.900
81) THERMOMETRY.11	SiC(Irr)	4.987	3.37	0.900
82) THERMOMETRY.12	SiC(Irr)	4.987	3.37	0.900
83) SUPPORT DISK.1	Moly	126.740	0.00	0.058
84) SUPPORT DISK.2	Moly	127.582	0.00	0.056
85) HOLDER.2	AL-6061	176.000	25.35	0.056
87) HOLDER.3	AL-6061	176.000	25.30	0.056
89) HOUSING	AL-6061	166.476	24.21	0.050
•				

CONTACT SUMMARY FOR CONTACT ID 97: HOLDER.1 To HOUSING Contact surface material: AL-6061

	Average	Minimum	Maximum
~~~~~~~ direct results ~~~~~~~			
Contact status	1.000	1.000	1.000
Contact temperature (°C)	290.018	281.887	292.989
Target temperature (°C)	59.870	57.426	62.830
Geometric gas gap (μm)	170.122	29.499	170.614
Contact pressure (MPa)	0.000	0.000	0.000
Gap conduction heat flux (kW/m²)	327.184	308.444	3896.325
Radiation heat flux (kW/m²)	0.000	0.000	0.000
Contact conduction heat flux (kW/m²)	0.000	0.000	0.000
Total heat flux (kW/m²)	327.184	308.444	3896.325
Thermal contact conductance (W/m²·C)	1422.921	1372.260	17183.894
~~~~~~~ derived results ~~~~~~~			
Effective gas gap (μm)	143.169	8.878	144.187
Contact thermal jump distance (µm)	1.520	1.504	1.525
Target thermal jump distance (μm)	1.349	1.336	1.353
Effective contact pressure (MPa)	0.000	0.000	0.000
Pressure index	13.534	13.534	13.534
Gas thermal conductivity (W/m⋅°C)	0.202	0.201	0.203
Solid spot conductance (W/m²·C)	0.000	0.000	0.000
Gas gap conductance (W/m²·C)	1422.161	1372.016	17118.766

Contact status codes:

0=open/no heat transfer, 1=near-field contact 2=closed and sliding, 3=closed and sticking

CONTACT SUMMARY FOR CONTACT ID 99: HOLDER.2 To HOUSING

Contact surface material: AL-6061
Target surface material: AL-6061
Interstitial gas: Helium
Effective surface roughness: 2.263 µm
Effective asperity slope: 0.214 rad
Effective microhardness: 1.220 GPa

	Average	Minimum	Maximum
~~~~~~ direct results ~~~~~~~			
Contact status	1.000	1.000	1.000
Contact temperature (°C)	290.182	281.742	291.897
Target temperature (°C)	60.136	59.964	62.998
Geometric gas gap (μm)	170.122	29.499	170.500
Contact pressure (MPa)	0.000	0.000	0.000
Gap conduction heat flux (kW/m²)	327.047	308.338	3826.906
Radiation heat flux (kW/m²)	0.000	0.000	0.000
Contact conduction heat flux (kW/m²)	0.000	0.000	0.000
Total heat flux (kW/m²)	327.047	308.338	3826.906
Thermal contact conductance (W/m2·C)	1423.336	1371.891	17201.663
~~~~~~ derived results ~~~~~~~			
Effective gas gap (μm)	143.177	8.878	144.191
Contact thermal jump distance (µm)	1.521	1.503	1.526
Target thermal jump distance (μm)	1.350	1.341	1.353
Effective contact pressure (MPa)	0.000	0.000	0.000

Pressure index	13.534	13.534	13.534
Gas thermal conductivity (W/m⋅°C)	0.202	0.201	0.203
Solid spot conductance (W/m²·C)	0.000	0.000	0.000
Gas gap conductance (W/m²·C)	1422.746	1371.660	17128.889

Contact status codes:

0=open/no heat transfer, 1=near-field contact

2=closed and sliding, 3=closed and sticking

.....

CONTACT SUMMARY FOR CONTACT ID 101: HOLDER.3 To HOUSING

Contact surface material: AL-6061 Target surface material: AL-6061 Interstitial gas: Helium Effective surface roughness: 2.263 μ m Effective asperity slope: 0.214 rad Effective microhardness: 1.220 GPa

	Average	Minimum	Maximum
~~~~~~~~ direct results ~~~~~~~~			
Contact status	1.000	1.000	1.000
Contact temperature (°C)	284.677	275.757	287.691
Target temperature (°C)	59.571	57.019	62.777
Geometric gas gap (μm)	170.122	29.499	170.584
Contact pressure (MPa)	0.000	0.000	0.000
Gap conduction heat flux (kW/m²)	317.306	301.166	3757.197
Radiation heat flux (kW/m²)	0.000	0.000	0.000
Contact conduction heat flux (kW/m²)	0.000	0.000	0.000
Total heat flux (kW/m²)	317.306	301.166	3757.197
Thermal contact conductance (W/m²·C)	1410.850	1358.146	17172.062
~~~~~~ derived results ~~~~~~~			
Effective gas gap (μm)	143.807	8.878	144.614
Contact thermal jump distance (µm)	1.505	1.480	1.514
Target thermal jump distance (μm)	1.338	1.320	1.345
Effective contact pressure (MPa)	0.000	0.000	0.000
Pressure index	13.534	13.534	13.534
Gas thermal conductivity (W/m⋅°C)	0.201	0.200	0.202
Solid spot conductance (W/m²·C)	0.000	0.000	0.000
Gas gap conductance (W/m²⋅C)	1409.969	1356.935	17111.700

Contact status codes:

0=open/no heat transfer, 1=near-field contact 2=closed and sliding, 3=closed and sticking

Table A-2. Rabbit temperature description, HT

TEMPERATURE DESIGN SOLUTION GENERAL METAL TENSILE

BOUNDARY CONDITIONS

Heat transfer coefficient = 31600. W/m²·°C
Bulk coolant temperature = 53.0 °C
Holder OD1 = 9.178 mm
Holder OD2 = 9.178 mm
Holder OD3 = 9.178 mm
HFIR HT Axial position 7.
HE fill gas

HEAT GENERATION

Part Material (W/kg)			Heat Gen.	Heat Load	
1) ENDCAP 3) GRAFOIL.1 GRAFOIL 33700. 0.2 0.2 4) GRAFOIL.2 GRAFOIL 33700. 0.2 0.2 5) GRAFOIL.3 GRAFOIL 33700. 0.2 0.2 6) GRAFOIL.3 GRAFOIL 33700. 0.2 0.2 0.2 6) GRAFOIL.3 GRAFOIL 33700. 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2				0 1	•
3) GRAFOIL.1 4) GRAFOIL.2 5) GRAFOIL.3 3700. 0.2 0.2 6) HOLDER.1 8) GRAFOIL.3 37700. 0.2 0.2 6) HOLDER.1 AL-6061 32500. 38.8 33.7 8) ROLLPIN.1 SS304 39300. 10.1 8.7 7.5 10) TENSILE_Cu.1 Copper 44200. 8.7 7.5 11) CHEVRON_Cu.1 Copper 44200. 5.6 4.9 12) CHEVRON_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 15) TENSILE_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Cu.3 Copper 44200. 8.7 7.5 16) CHEVRON_Cu.0 15) Copper 44200. 8.7 7.5 16) CHEVRON_Cu.0 16) Copper 44200. 8.7 7.5 17) TENSILE_Cu.3 Copper 44200. 8.7 7.5 18) TENSILE_Cu.3 Copper 44200. 8.7 7.5 19) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 17) CHEVRON_Cu.4 Copper 44200. 8.7 7.5 18) TENSILE_Cu.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 10) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Part	Material	(W/kg)	(W)	(W)
3) GRAFOIL.1 4) GRAFOIL.2 5) GRAFOIL.3 3700. 0.2 0.2 6) HOLDER.1 8) GRAFOIL.3 37700. 0.2 0.2 6) HOLDER.1 AL-6061 32500. 38.8 33.7 8) ROLLPIN.1 SS304 39300. 10.1 8.7 7.5 10) TENSILE_Cu.1 Copper 44200. 8.7 7.5 11) CHEVRON_Cu.1 Copper 44200. 5.6 4.9 12) CHEVRON_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 15) TENSILE_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Cu.3 Copper 44200. 8.7 7.5 16) CHEVRON_Cu.0 15) Copper 44200. 8.7 7.5 16) CHEVRON_Cu.0 16) Copper 44200. 8.7 7.5 17) TENSILE_Cu.3 Copper 44200. 8.7 7.5 18) TENSILE_Cu.3 Copper 44200. 8.7 7.5 19) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 17) CHEVRON_Cu.4 Copper 44200. 8.7 7.5 18) TENSILE_Cu.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 10) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7					
4) GRAFOIL.2 5) GRAFOIL.3 6) GRAFOIL.3 6) HOLDER.1 AL-6061 32500. 38.8 33.7 8) ROLLPIN.1 5) TENSILE_Cu.1 Copper 4200. 5.6 4.9 11) CHEVRON_Cu.1 Copper 4200. 5.6 4.9 12) CHEVRON_Cu.2 Copper 4200. 5.6 4.9 13) TENSILE_Cu.3 Copper 4200. 5.6 4.9 12) CHEVRON_Cu.2 Copper 4200. 5.6 4.9 13) TENSILE_Cu.3 Copper 4200. 5.6 4.9 13) TENSILE_Cu.3 Copper 4200. 5.6 4.9 13) TENSILE_Cu.3 Copper 4200. 5.6 4.9 15) TENSILE_Cu.3 Copper 4200. 5.6 4.9 17) TENSILE_Cu.3 Copper 4200. 5.6 4.9 17) TENSILE_Cu.3 Copper 4200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 4200. 5.6 4.9 17) TENSILE_Cu.3 Copper 4200. 5.6 4.9 17) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 4200. 5.6 4.9 10) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 10) TENSILE_Cu.4 Copper 4200. 5.6 4.9 10) TENSILE_Cu.4 Copper 4200. 5.6 4.9 11) TENSILE_Cu.4 Copper 4200. 5.6 4.9 12) CHEVRON_Cu.5 Copper 4200. 5.6 4.9 17) TENSILE_Cu.4 Copper 4200. 5.6 4.9 17) TENSILE_Cu.5 Copper 4200. 5.6 4.9 17) TENSILE_Cu.5 Copper 4200. 5.6 4.9 17) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.					
S GRAFOIL S GRAFOIL S S S S S S S S S					
6) HOLDER.1 8) ROLLPIN.1 9) TENSILE_CU.1 10 Copper 44200. 8.7 7.5 10) TENSILE_Al.1 11 AL-6061 32500. 1.9 1.7 11) CHEVRON_CU.1 12) CHEVRON_CU.1 13) TENSILE_CU.2 14) Copper 44200. 15.6 19 113) TENSILE_CU.2 14) TENSILE_Al.2 15) TENSILE_CU.2 16) CHEVRON_CU.3 17) CHEVRON_CU.3 18) TENSILE_CU.3 19 10 CHEVRON_CU.4 110 CHEVRON_CU.3 111 CHEVRON_CU.3 112 COPPER 44200. 113 TENSILE_CU.3 114 COPPER 44200. 115 TENSILE_CU.3 115 TENSILE_CU.3 116 CHEVRON_CU.3 117 CHEVRON_CU.4 118 TENSILE_Al.3 119 TENSILE_Al.3 110 COPPER 44200. 110 TENSILE_Al.3 110 COPPER 44200. 111 COPPER 44200. 111 COPPER 44200. 111 COPPER 44200. 112 COPPER 44200. 113 TENSILE_CU.4 115 TENSILE_Al.3 116 CHEVRON_CU.4 117 COPPER 44200. 118 TENSILE_Al.3 119 TENSILE_CU.4 110 COPPER 44200. 110 TENSILE_CU.4 110 TENSILE_CU.4 111 CHEVRON_CU.5 111 CHEVRON_CU.5 111 CHEVRON_CU.5 111 CHEVRON_CU.5 111 CHEVRON_CU.5 112 CHEVRON_CU.5 113 TENSILE_CU.5 114 COPPER 44200. 115 COPPER 44200. 115 COPPER 44200. 116 CHEVRON_CU.5 117 COPPER 44200. 119 TENSILE_CU.5 117 COPPER 44200. 119 TENSILE_CU.5 110 COPPER 44200. 110 TENSILE_CU.5 110 TENSILE_CU.5 111 CHEVRON_CU.5 111 CHEVRON_CU.5 111 CHEVRON_CU.5 111 CHEVRON_CU.5 112 COPPER 44200. 113 TENSILE_CU.5 115 COPPER 44200. 119 TENSILE_CU.5 110	•				
8) ROLLPIN.1 9) TENSILE_Cu.1 10) TENSILE_Cu.1 11) CHEVRON_Cu.1 11) CHEVRON_Cu.1 12) CHEVRON_Cu.2 13) TENSILE_Cu.2 14) TENSILE_Cu.2 15) TENSILE_Cu.2 16) TENSILE_Cu.2 17) TENSILE_Cu.2 18) TENSILE_Cu.2 19) TENSILE_Cu.2 19) TENSILE_Cu.3 10) TENSILE_Cu.3 11) TENSILE_Cu.3 12) COpper 44200. 12) CHEVRON_Cu.3 13) TENSILE_Cu.3 14) TENSILE_Cu.3 15) TENSILE_Cu.3 16) CHEVRON_Cu.3 17) CHEVRON_Cu.4 18) TENSILE_Al.3 19) TENSILE_Al.3 10) AL-6061 11) TENSILE_Al.3 11) TENSILE_Cu.4 12) Copper 44200. 13) TENSILE_Cu.4 14) TENSILE_Cu.4 15) TENSILE_Cu.4 16) Copper 44200. 17) CHEVRON_Cu.4 18) TENSILE_Al.3 19) TENSILE_Cu.4 10) TENSILE_Cu.4 11) TENSILE_Cu.4 12) Chevron_Cu.5 13) TENSILE_Cu.5 14) TENSILE_Cu.5 15) TENSILE_Cu.5 16) Copper 44200. 17) CHEVRON_Cu.6 17) Copper 44200. 18) TENSILE_Cu.5 18) TENSILE_Cu.5 19) TENSILE_Cu.5 10) TENSILE_Cu.5 10) TENSILE_Cu.5 10) TENSILE_Cu.5 11) TENSILE_Cu.5 12) TENSILE_Cu.5 13) TENSILE_Cu.5 14) TENSILE_Cu.5 15) TENSILE_Cu.5 16) Copper 44200. 17) CHEVRON_Cu.6 17) TENSILE_Cu.5 18) TENSILE_Cu.5 19) TENSILE_Cu.5 10) TENSIL					
9) TENSILE_Cu.1	,				
10) TENSILE_Al.1					
11) CHEVRON_Cu.1 Copper 44200. 5.6 4.9 12) CHEVRON_Cu.2 Copper 44200. 5.6 4.9 13) TENSILE_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 15) TENSILE_Cu.3 Copper 44200. 8.7 7.5 16) CHEVRON_Cu.3 Copper 44200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 20) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Al.5 Copper 44200. 8.7 7.5 24) TENSILE_Al.5 SCOPPER 44200. 8.7 7.5 24) TENSILE_Al.5 SCOPPER 44200. 8.7 7.5 25) TENSILE_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 4.5 3.9 29) THERMOMETRY.1 SIC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.1 SIC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.2 SIC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.3 SIC(Irr) 32900. 3.0 2.6 33) TENSILE_N.1 Nickel 39300. 6.8 5.6 36) CHEVRON_30.4 SS304 39300. 6.5 3.7 37) CHEVRON_30.4 SS304 39300. 6.5 3.7 38) TENSILE_N.1 Nickel 39300. 7.7 6.4 39) TENSILE_IN.1 Nickel 39300. 7.7 6.4 39) TENSILE_IN.1 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.5 SS304 39300. 4.5 3.7	, =				
12) CHEVRON_Cu.2 Copper 44200. 5.6 4.9 13) TENSILE_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 15) TENSILE_Cu.3 Copper 44200. 8.7 7.5 16) CHEVRON_Cu.3 Copper 44200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Al.4 Copper 44200. 8.7 7.5 20) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_B.1.5 AL-6061 32500. 1.9 1.7 25) TENSILE_B.1.5 AL-6061 32500. 1.9 1.7 25) TENSILE_B.1.5 SAL-6061 32500. 1.9 1.7 26) TENSILE_B.1.5 SAL-6061 32500. 1.9 1.7 27) CHEVRON_30.1 SS304 39300. 6.9 6.0 28) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_B.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SIC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SIC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SIC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SIC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 6.8 5.6 34) TENSILE_Al.1 F82H 39300. 6.8 5.6 35) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Al.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.5 SS304 39300. 4.5 3.7 38) TENSILE_INI.2 Nickel 39300. 7.7 6.4 39) TENSILE_Al.2 F82H 39300. 6.8 5.6 40) TENSILE_Al.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	· · · · · · · · · · · · · · · · · · ·				
13) TENSILE_Cu.2 Copper 44200. 8.7 7.5 14) TENSILE_Al.2 AL-6061 32500. 1.9 1.7 15) TENSILE_Cu.3 Copper 44200. 8.7 7.5 16) CHEVRON_Cu.3 Copper 44200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 20) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.6 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 25) TENSILE_BJ.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 Sic(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 7.7 6.4 34) TENSILE_Al.1 F82H 39300. 6.8 5.6 35) TENSILE_Al.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Al.1 F82H 39300. 6.8 5.6 40) TENSILE_Al.2 F82H 39300. 6.8 5.6 40) TENSILE_Al.3 Nickel 39300. 4.5 3.7 42) CHEVRON_30.5 SS304 39300. 4.5 3.7	· =				
14) TENSILE_A1.2	· =				
15) TENSILE_Cu.3 Copper 44200. 8.7 7.5 16) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 17) CHEVRON_Cu.4 Copper 44200. 5.6 4.9 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 20) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 5.6 4.9 23) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 25) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 25) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 26) CHEVRON_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 4.5 3.9 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 4.5 3.7 37) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 39) TENSILE_Li.2 Nickel 39300. 7.7 6.4 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	, –				
16) CHEVRON_Cu.3 17) CHEVRON_Cu.4 18) TENSILE_Al.3 18) TENSILE_Cu.4 19) TENSILE_Cu.4 19) TENSILE_Cu.4 19) TENSILE_Cu.4 10) TENSILE_Cu.4 10) TENSILE_Cu.4 10) TENSILE_Cu.4 11) TENSILE_Cu.4 11) TENSILE_Cu.4 11) TENSILE_Cu.4 12) TENSILE_Al.4 14) AL-6061 132500. 1.9 1.7 1.7 12) CHEVRON_Cu.5 12) Copper 14200. 12) CHEVRON_Cu.5 13) TENSILE_Cu.5 14) TENSILE_Cu.5 15) Copper 14200. 16) CHEVRON_Cu.6 17) TENSILE_Al.5 18) TENSILE_Al.5 19) TENSILE_Al.5 11) TENSILE_Al.5 11) TENSILE_Al.5 12) TENSILE_Al.5 13) TENSILE_Al.5 14) TENSILE_Al.5 15) TENSILE_Al.5 15) TENSILE_Al.5 16) CHEVRON_Bo.1 17) CHEVRON_Bo.1 18) TENSILE_Bo.1 18) TENSILE_Bo.1 18) TENSILE_Bo.1 18) TENSILE_Bo.2 19) THERMOMETRY.1 19) TENSILE_Bo.2 10) THERMOMETRY.1 10) TENSILE_Bo.1 11) TENSILE_Bo.1 12) THERMOMETRY.1 13) TENSILE_NI.1 14) TENSILE_NI.1 15) TENSILE_NI.1 16) TENSILE_NI.1 16) TENSILE_Al.1 17) TENSILE_Al.1 18) TENSILE_Al.2 18) TENSILE_Al.2 18) TENSILE_Al.3 18) TENSILE_Al.3 19)	, =				
17) CHEVRON_Cu.4 18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 20) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.6 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 8.7 7.5 24) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 25) TENSILE_Bl.5 AL-6061 32500. 1.9 1.7 25) TENSILE_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 4.5 3.9 28) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 4.5 3.7 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 SS304 39300. 4.5 3.7 37) CHEVRON_30.5 SS304 39300. 4.5 3.7 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7		Copper	44200.		
18) TENSILE_Al.3 AL-6061 32500. 1.9 1.7 19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 20) TENSILE_Al.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.6 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 8.7 7.5 24) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 25) TENSILE_So.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 3.0 2.6 30) THERMOMETRY.1 SIC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.2 SIC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SIC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 4.5 3.7 43) TENSILE_Ni.1 Nickel 39300. 4.5 3.7 37) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.3 SS304 39300. 4.5 3.7 38) TENSILE_Ni.1 Nickel 39300. 4.5 3.7 37) CHEVRON_30.3 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6		Copper			
19) TENSILE_Cu.4 Copper 44200. 8.7 7.5 20) TENSILE_A1.4 AL-6061 32500. 1.9 1.7 21) CHEVRON_Cu.5 Copper 44200. 5.6 4.9 22) CHEVRON_Cu.6 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 8.7 7.5 24) TENSILE_A1.5 AL-6061 32500. 1.9 1.7 25) TENSILE_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 6.9 6.0 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_A1.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_LA1.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	17) CHEVRON_Cu.4	Copper	44200.		
20) TENSILE_A1.4	, =	AL-6061			
21) CHEVRON_Cu.5 Copper	· =	Copper	44200.	8.7	7.5
22) CHEVRON_Cu.6 Copper 44200. 5.6 4.9 23) TENSILE_Cu.5 Copper 44200. 8.7 7.5 24) TENSILE_Al.5 AL-6061 32500. 1.9 1.7 25) TENSILE_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.5 SS304 39300. 4.5 3.7	20) TENSILE_A1.4	AL-6061	32500.	1.9	
23) TENSILE_Cu.5 Copper 44200. 8.7 7.5 24) TENSILE_A1.5 AL-6061 32500. 1.9 1.7 25) TENSILE_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	· =	Copper	44200.		4.9
24) TENSILE_A1.5 AL-6061 32500. 1.9 1.7 25) TENSILE_30.1 SS304 39300. 6.9 6.0 26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 4.5 3.7 37) CHEVRON_30.3 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 40) TENSILE_Ni.3<		Copper	44200.	5.6	4.9
25) TENSILE_30.1	23) TENSILE_Cu.5	Copper	44200.	8.7	7.5
26) CHEVRON_30.1 SS304 39300. 4.5 3.9 27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 41 CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	24) TENSILE_A1.5	AL-6061	32500.	1.9	1.7
27) CHEVRON_30.2 SS304 39300. 4.5 3.9 28) TENSILE_30.2 SS304 39300. 6.9 6.0 29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 </td <td>25) TENSILE_30.1</td> <td>SS304</td> <td>39300.</td> <td>6.9</td> <td>6.0</td>	25) TENSILE_30.1	SS304	39300.	6.9	6.0
28) TENSILE_30.2	26) CHEVRON_30.1	SS304	39300.	4.5	3.9
29) THERMOMETRY.1 SiC(Irr) 32900. 3.0 2.6 30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	27) CHEVRON_30.2	SS304	39300.	4.5	3.9
30) THERMOMETRY.2 SiC(Irr) 32900. 3.0 2.6 31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	28) TENSILE_30.2	SS304	39300.	6.9	6.0
31) THERMOMETRY.3 SiC(Irr) 32900. 3.0 2.6 32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	29) THERMOMETRY.1	SiC(Irr)	32900.	3.0	2.6
32) THERMOMETRY.4 SiC(Irr) 32900. 3.0 2.6 33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	30) THERMOMETRY.2	SiC(Irr)	32900.	3.0	2.6
33) ROLLPIN.2 SS304 39300. 10.1 8.4 34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_Ni.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	31) THERMOMETRY.3	SiC(Irr)	32900.	3.0	2.6
34) TENSILE_Ni.1 Nickel 39300. 7.7 6.4 35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	32) THERMOMETRY.4	SiC(Irr)	32900.	3.0	2.6
35) TENSILE_41.1 F82H 39300. 6.8 5.6 36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	33) ROLLPIN.2	SS304	39300.	10.1	8.4
36) CHEVRON_30.3 SS304 39300. 4.5 3.7 37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	34) TENSILE_Ni.1	Nickel	39300.	7.7	6.4
37) CHEVRON_30.4 SS304 39300. 4.5 3.7 38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	35) TENSILE_41.1	F82H	39300.	6.8	5.6
38) TENSILE_Ni.2 Nickel 39300. 7.7 6.4 39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	36) CHEVRON_30.3	SS304	39300.	4.5	3.7
39) TENSILE_41.2 F82H 39300. 6.8 5.6 40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	37) CHEVRON_30.4	SS304	39300.	4.5	3.7
40) TENSILE_Ni.3 Nickel 39300. 7.7 6.4 41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	38) TENSILE_Ni.2	Nickel	39300.	7.7	6.4
41) CHEVRON_30.5 SS304 39300. 4.5 3.7 42) CHEVRON_30.6 SS304 39300. 4.5 3.7	39) TENSILE_41.2	F82H	39300.	6.8	5.6
42) CHEVRON_30.6 SS304 39300. 4.5 3.7	40) TENSILE_Ni.3	Nickel	39300.	7.7	6.4
, =	41) CHEVRON_30.5	SS304	39300.	4.5	3.7
43) TENSILE_30.3 SS304 39300. 6.9 5.7	42) CHEVRON_30.6	SS304	39300.	4.5	3.7
	43) TENSILE_30.3	SS304	39300.	6.9	5.7

44) TENSILE_Ni.4	Nickel	39300.	7.7	6.4
45) TENSILE_30.4	SS304	39300.	6.9	5.7
46) CHEVRON_30.7	SS304	39300.	4.5	3.7
47) CHEVRON_30.8	SS304	39300.	4.5	3.7
48) TENSILE_Ni.5	Nickel	39300.	7.7	6.4
49) TENSILE 41.3	F82H	39300.	6.8	5.6
50) TENSILE 41.4	F82H	39300.	6.8	5.6
51) CHEVRON_30.9	SS304	39300.	4.5	3.7
52) CHEVRON 30.10	SS304	39300.	4.5	3.7
53) TENSILE 41.5	F82H	39300.	6.8	5.6
54) THERMOMETRY.5	SiC(Irr)	32900.	3.0	2.5
55) THERMOMETRY.6	SiC(Irr)	32900.	3.0	2.5
56) THERMOMETRY.7	SiC(Irr)	32900.	3.0	2.5
57) THERMOMETRY.8	SiC(Irr)	32900.	3.0	2.5
58) ROLLPIN.3	SS304	39300.	10.1	8.0
59) TENSILE Zr.1	Nickel	39300.	7.7	6.1
60) TENSILE Zr.2	Nickel	39300.	7.7	6.1
61) CHEVRON 30.11	SS304	39300.	4.5	3.6
62) CHEVRON 30.12	SS304	39300.	4.5	3.6
63) TENSILE Zr.3	Nickel	39300.	7.7	6.1
64) TENSILE 41.6	F82H	39300.	6.8	5.4
65) TENSILE 41.7	F82H	39300.	6.8	5.4
66) CHEVRON 30.13	SS304	39300.	4.5	3.6
67) CHEVRON 30.14	SS304	39300.	4.5	3.6
68) TENSILE 41.8	F82H	39300.	6.8	5.4
69) TENSILE_Zr.4	Nickel	39300.	7.7	6.1
70) TENSILE 41.9	F82H	39300.	6.8	5.4
71) CHEVRON 30.15	SS304	39300.	4.5	3.6
72) CHEVRON 30.16	SS304	39300.	4.5	3.6
73) TENSILE_Zr.5	Nickel	39300.	7.7	6.1
74) TENSILE 41.10	F82H	39300.	6.8	5.4
75) TENSILE 41.11	F82H	39300.	6.8	5.4
76) CHEVRON 30.17	SS304	39300.	4.5	3.6
77) CHEVRON 30.18	SS304	39300.	4.5	3.6
78) TENSILE 41.12	F82H	39300.	6.8	5.4
79) THERMOMETRY.9	SiC(Irr)	32900.	3.0	2.4
80) THERMOMETRY.10	SiC(Irr)	32900.	3.0	2.4
81) THERMOMETRY.11	SiC(Irr)	32900.	3.0	2.4
82) THERMOMETRY.12	SiC(Irr)	32900.	3.0	2.4
83) SUPPORT DISK.1	Molv	43300.	1.5	1.3
84) SUPPORT DISK.2	Molv	43300.	1.5	1.1
85) HOLDER.2	AL-6061	32500.	38.8	32.2
87) HOLDER.3	AL-6061	32500.	38.8	30.7
89) HOUSING	AL-6061	32500.	139.3	116.2
,				
			699.8	579.4

CAPSULE TEMPERATURE SUMMARY

Name	Material	Tavg	Tmin	Tmax	T.025	T.975
1) ENDCAP	AL-6061	83.	81.	85.	81.	84.
3) GRAFOIL.1	GRAFOIL	63.	63.	64.	63.	64.
4) GRAFOIL.2	GRAFOIL	64.	64.	64.	64.	64.
5) GRAFOIL.3	GRAFOIL	64.	64.	65.	64.	65.
6) HOLDER.1	AL-6061	292.	283.	296.	289.	295.
8) ROLLPIN.1	SS304	376.	368.	385.	371.	381.
TENSILE_Cu.1	Copper	311.	309.	314.	310.	314.
10) TENSILE_Al.1	AL-6061	320.	315.	323.	316.	322.
11) CHEVRON_Cu.1	Copper	329.	328.	330.	329.	330.
12) CHEVRON_Cu.2	Copper	312.	311.	312.	311.	312.

13) TENSILE Cu.2	Copper	329.	324.	331.	326.	331.
14) TENSILE_A1.2	AL-6061					
15) TENSILE_Cu.3	Copper					
	Copper	227	226			220
16) CHEVRON_Cu.3	Copper Copper	32/.	320.	328.	326. 310.	320.
17) CHEVRON_Cu.4	Copper	311.	310.	311.	310.	311.
18) TENSILE_A1.3	AL-6061	320.	314.	324.		
<pre>19) TENSILE_Cu.4</pre>	Copper	312.	310.	315.	310.	315.
20) TENSILE_A1.4	AL-6061	321.	316.	324.	317.	323.
21) CHEVRON_Cu.5	AL-6061 Copper	330.	329.	331.	317. 330.	331.
22) CHEVRON Cu.6	Copper	313	312	313.		
	Conner	330	325	332.	327	
24) TENSILE_CU.5	Copper AL-6061 SS304	200.	201	212	327.	212
24) TENSILE_A1.5	AL-0001	224	304.	224	305. 310.	224
	55304	324.	306.	334.	310.	
26) CHEVRON_30.1	SS304	334.	318.	343.	325.	
27) CHEVRON_30.2	SS304 SS304 SiC(Irr)	312.	304.	322.	307.	320.
28) TENSILE_30.2	SS304	335.	304.	348.	314.	346.
29) THERMOMETRY.1	SiC(Irr)	340.	298.	370.	308.	363.
30) THERMOMETRY.2	SiC(Irr)	333.	299.	364.	307.	353.
31) THERMOMETRY.3	SiC(Irr)	328.	297.	362.	306.	352.
32) THERMOMETRY.4	SiC(Irr) SiC(Irr)	334.	299.	365.	306. 308.	355.
33) ROLLPIN.2	SS304	388	382	395.	384.	392
34) TENSILE_Ni.1						
	Nickel	220	244			220.
35) TENSILE_41.1	F82H	330.	311. 320.	220.	317. 327.	330.
36) CHEVRON_30.3	SS304	336.	320.	345.	32/.	
37) CHEVRON_30.4	SS304					
38) TENSILE_Ni.2	Nickel	339.	320.	348.	326.	347.
39) TENSILE_41.2	F82H	316.	308. 316.	323.	310. 320.	321.
40) TENSILE_Ni.3	Nickel	331.	316.	339.	320.	337.
41) CHEVRON 30.5	SS304	337.	321.	347.	328.	
	SS304	315.	308.	325.	310.	
43) TENSILE 30.3	55304	340	307	354	318	351.
44) TENSILE Ni.4	SS304 SS304 Nickel	316	309	322	318. 311.	320
45) TENSILE_30.4	SS304	221	307.	340.		
<u> </u>						
46) CHEVRON_30.7	SS304	330.	319. 308.	346.	327.	344.
47) CHEVRON_30.8	SS304	315.	308.	325.	310.	322.
			320.			
49) TENSILE_41.3	F82H	314.	306.	322.	308.	
50) TENSILE_41.4	F82H	329.	311. 320.	338.	316. 326.	336.
51) CHEVRON_30.9	SS304	335.	320.	345.	326.	343.
52) CHEVRON_30.10	SS304	314.	307.	324.	309.	321.
	F82H					
54) THERMOMETRY.5	SiC(Irr)	342.	299.	375.	309.	367.
55) THERMOMETRY.6	SiC(Irr)					
56) THERMOMETRY.7	SiC(Irr)		299.			
57) THERMOMETRY.8	SiC(Irr)		299.	377.		
,						
58) ROLLPIN.3		377.	371.	383.	373.	381.
59) TENSILE_Zr.1	Nickel	310.	304.		305.	
60) TENSILE_Zr.2	Nickel					
61) CHEVRON_30.11	SS304	329.	313.	338.		336.
62) CHEVRON_30.12	SS304	308.	301.	318.	304.	315.
63) TENSILE_Zr.3	Nickel	332.	313.	340.	319.	339.
64) TENSILE_41.6	F82H	308.	300.	315.		313.
65) TENSILE 41.7	F82H	322.	304.	331.	309.	329.
66) CHEVRON_30.13	SS304	328.	313.	338.	319.	336.
67) CHEVRON 30.14	SS304	307.	300.	317.	303.	314.
68) TENSILE_41.8	F82H	331.	202	2.42		341.
· —	Nickel					
69) TENSILE_Zr.4		222	302. 303.	314.		312.
70) TENSILE_41.9	F82H	322.	303.			328.
71) CHEVRON_30.15	SS304	328.				
72) CHEVRON_30.16	SS304	307.	300.	317.		314.
73) TENSILE_Zr.5	Nickel	331.	312.	340.	317.	339.
74) TENSILE_41.10	F82H	308.	299.	316.	301.	314.

75) TENSILE_41.11	F82H	323.	304.	331.	309.	330.
76) CHEVRON_30.17	SS304	328.	312.	337.	318.	335.
77) CHEVRON_30.18	SS304	319.	306.	327.	311.	324.
78) TENSILE_41.12	F82H	331.	304.	342.	313.	340.
79) THERMOMETRY.9	SiC(Irr)	336.	294.	366.	306.	358.
80) THERMOMETRY.10	SiC(Irr)	335.	293.	368.	304.	358.
81) THERMOMETRY.11	SiC(Irr)	335.	292.	367.	302.	359.
82) THERMOMETRY.12	SiC(Irr)	335.	292.	366.	302.	358.
83) SUPPORT_DISK.1	Moly	309.	288.	328.	295.	327.
84) SUPPORT_DISK.2	Moly	288.	274.	294.	280.	294.
85) HOLDER.2	AL-6061	292.	283.	296.	289.	295.
87) HOLDER.3	AL-6061	286.	276.	291.	283.	290.
89) HOUSING	AL-6061	62.	56.	68.	57.	64.

PROPERTY SUMMARY AT THE AVERAGE PART TEMPERATURE

				Thermal	
			Thermal	Exp.	
			Cond.		Emis
Name		Material		(μm/m⋅°C)	• •
	FNDCAD			0.00	
	ENDCAP	AL-6061		0.00	0.050
•	GRAFOIL.1	GRAFOIL GRAFOIL			
	GRAFOIL.2	GRAFOIL			
•	GRAFOIL.3 HOLDER.1	AL-6061			0.500 0.057
		SS304	20.488	23.30	0.143
•	ROLLPIN.1 TENSILE Cu.1				
	TENSILE_CU.1	Copper AL-6061	176.000		
	CHEVRON Cu.1	Copper			
	CHEVRON Cu.2				0.032
	<u>-</u>	Copper	380.069 378.908	0.00	0.032
•	TENSILE_Cu.2	Copper			
	TENSILE_A1.2	AL-6061			
	TENSILE_Cu.3	Copper	379.731 378.994		0.032 0.032
	CHEVRON_Cu.3	Copper			
•	CHEVRON_Cu.4 TENSILE A1.3	Copper AL-6061			
•	_	Copper	176.000		0.032
	TENSILE_Cu.4 TENSILE A1.4	Copper.	380.030 176.000		0.052
	_	AL-6061	270.000		
	CHEVRON_Cu.5 CHEVRON Cu.6	Copper			
	TENSILE Cu.5	Copper	380.011		
•	_	Copper			0.032
	TENSILE_A1.5	AL-6061 SS304	176.000 19.759		
	TENSILE_30.1	SS304	19.759		
•	CHEVRON_30.1 CHEVRON 30.2	SS304	19.595		
	TENSILE_30.2	SS304			
	THERMOMETRY.1	SiC(Irr)			
		SiC(Irr)			0.900
	THERMOMETRY.2 THERMOMETRY.3	SiC(Irr)			0.900
	THERMOMETRY.4				
		SiC(Irr) SS304			
	ROLLPIN.2 TENSILE Ni.1	Nickel	20.652 66.362		
	TENSILE_NI.1	F82H	33.751		
	CHEVRON 30.3	SS304	19.924		
	CHEVRON 30.4	SS304	19.629		
•	TENSILE Ni.2	Nickel	64.918		
	TENSILE_N1.2 TENSILE 41.2	F82H	33.782		
	TENSILE_41.2 TENSILE Ni.3	Nickel	65.359		
•	CHEVRON 30.5	SS304	19.937		
	CHEVRON_30.6	SS304	19.631		
42)	CHEVILON_DO.O	40000	19.031	0.00	0.143

43) TENSILE_30.3	SS304	19.987	0.00	0.143
44) TENSILE_Ni.4	Nickel	66.349	0.00	0.185
45) TENSILE_30.4	SS304	19.857	0.00	0.143
46) CHEVRON_30.7	SS304	19.932	0.00	0.143
47) CHEVRON_30.8	SS304		0.00	
48) TENSILE_Ni.5	Nickel	64.820	0.00	0.185
49) TENSILE 41.3	F82H	33.785	0.00 11.26	0.143
50) TENSILE_41.4	F82H	33.753	11.33	0.143
51) CHEVRON_30.9	SS304	19.917	0.00	0.143
52) CHEVRON_30.10	SS304	19.618	0.00 0.00	0.143
53) TENSILE 41.5	F82H	33.734	11.38	
54) THERMOMETRY.5	SiC(Irr)		3.39	0.900
55) THERMOMETRY.6	SiC(Irr)	4.985 4.985	3.39	0.900
56) THERMOMETRY.7	SiC(Irr)	4.984	3.39	0.900
57) THERMOMETRY.8	SiC(Irr)	4.984 4.984	3.39	0.900
58) ROLLPIN.3	SS304	20.499	0.00	0.143
59) TENSILE Zr.1	Nickel	66.729	0.00	0.185
60) TENSILE_Zr.2	Nickel	65.835	0.00 0.00	0.185
61) CHEVRON 30.11	SS304	19.823	0.00	0.143
62) CHEVRON_30.12	SS304	19.539	0.00	0.143
63) TENSILE_Zr.3	Nickel		0.00	
64) TENSILE_41.6	F82H	33.799	11.23	0.143
	F82H	33.768	11.23 11.30	0.143
66) CHEVRON_30.13	SS304			0.143
67) CHEVRON_30.14	SS304	19.525	0.00	0.143
68) TENSILE_41.8	F82H	33.749	0.00 11.34	0.143
69) TENSILE_Zr.4	Nickel	66.832	0.00	0.185
70) TENSILE_41.9	F82H	33.768	11.30	0.143
71) CHEVRON_30.15	SS304	19.807	0.00	0.143
72) CHEVRON_30.16	SS304	19.521	0.00 0.00 0.00	0.143
73) TENSILE_Zr.5	Nickel	65.387	0.00	0.185
74) TENSILE_41.10	F82H	33.799	11.23	0.143
75) TENSILE_41.11	F82H	33.767 19.807	11.23 11.30 0.00 0.00	0.143
76) CHEVRON_30.17	SS304	19.807	0.00	0.143
77) CHEVRON_30.18	SS304			0.143
78) TENSILE_41.12	F82H		11.34	0.143
79) THERMOMETRY.9		4.987		
80) THERMOMETRY.10	SiC(Irr)	4.987 4.987	3.37	0.900
81) THERMOMETRY.11	SiC(Irr)	4.987	3.37	0.900
82) THERMOMETRY.12	SiC(Irr)	4.987	3.37	0.900
83) SUPPORT_DISK.1	Moly Moly	126.701	0.00	0.058
84) SUPPORT_DISK.2	Moly	127.559	0.00	
85) HOLDER.2	AL-6061 AL-6061	176.000	25.36	0.057
87) HOLDER.3	AL-6061	176.000	25.31	0.056
89) HOUSING	AL-6061	166.914	24.21	0.050

CONTACT SUMMARY FOR CONTACT ID 97: HOLDER.1 To HOUSING

	Average	Minimum	Maximum
~~~~~~~ direct results ~~~~~~~	·		
Contact status	1.000	1.000	1.000
Contact temperature (°C)	291.204	283.160	294.112
Target temperature (°C)	63.886	60.605	67.060
Geometric gas gap (μm)	170.122	29.499	170.614

Contact pressure (MPa)	0.000	0.000	0.000
Gap conduction heat flux (kW/m²)	323.853	304.983	3869.039
Radiation heat flux (kW/m²)	0.000	0.000	0.000
Contact conduction heat flux (kW/m²)	0.000	0.000	0.000
Total heat flux (kW/m²)	323.853	304.983	3869.039
Thermal contact conductance (W/m2·C)	1425.923	1375.280	17223.685
~~~~~~ derived results ~~~~~~~			
Effective gas gap (μm)	143.465	8.878	144.503
Contact thermal jump distance (µm)	1.531	1.513	1.537
Target thermal jump distance (μm)	1.362	1.347	1.366
Effective contact pressure (MPa)	0.000	0.000	0.000
Pressure index	13.534	13.534	13.534
Gas thermal conductivity (W/m⋅°C)	0.203	0.202	0.203
Solid spot conductance (W/m2·C)	0.000	0.000	0.000
Gas gap conductance (W/m²·C)	1425.162	1374.668	17137.019

Contact status codes:

0=open/no heat transfer, 1=near-field contact 2=closed and sliding, 3=closed and sticking

CONTACT SUMMARY FOR CONTACT ID 99: HOLDER.2 To HOUSING

	Average	Minimum	Maximum
- nnnnnnnnnn direct results nnnnnnnnn			
Contact status	1.000	1.000	1.000
Contact temperature (°C)	291.226	282.788	292.976
Target temperature (°C)	64.313	64.099	67.222
Geometric gas gap (μm)	170.122	29.499	170.500
Contact pressure (MPa)	0.000	0.000	0.000
Gap conduction heat flux (kW/m²)	323.203	304.545	3783.048
Radiation heat flux (kW/m²)	0.000	0.000	0.000
Contact conduction heat flux (kW/m²)	0.000	0.000	0.000
Total heat flux (kW/m²)	323.203	304.545	3783.048
Thermal contact conductance (W/m²·C)	1426.035	1374.394	17240.680
~~~~~~ derived results ~~~~~~~			
Effective gas gap (μm)	143.508	8.878	144.528
Contact thermal jump distance (µm)	1.532	1.514	1.537
Target thermal jump distance (μm)	1.363	1.354	1.367
Effective contact pressure (MPa)	0.000	0.000	0.000
Pressure index	13.534	13.534	13.534
Gas thermal conductivity (W/m⋅°C)	0.203	0.202	0.203
Solid spot conductance (W/m²·C)	0.000	0.000	0.000
Gas gap conductance (W/m²⋅C)	1425.216	1373.797	17146.385

### Contact status codes:

0=open/no heat transfer, 1=near-field contact 2=closed and sliding, 3=closed and sticking

CONTACT SUMMARY FOR CONTACT ID 101: HOLDER.3 To HOUSING

Contact surface material: AL-6061 Target surface material: AL-6061

	Average	Minimum	Maximum
nnnnnnnnn direct results nnnnnnnnn			
Contact status	1.000	1.000	1.000
Contact temperature (°C)	285.417	276.464	288.525
Target temperature (°C)	63.441	59.977	66.914
Geometric gas gap (µm)	170.122	29.499	170.584
Contact pressure (MPa)	0.000	0.000	0.000
Gap conduction heat flux (kW/m²)	313.350	298.398	3718.829
Radiation heat flux (kW/m²)	0.000	0.000	0.000
Contact conduction heat flux (kW/m²)	0.000	0.000	0.000
Total heat flux (kW/m²)	313.350	298.398	3718.829
Thermal contact conductance (W/m2·C)	1412.852	1359.873	17208.822
~~~~~~ derived results ~~~~~~~			
Effective gas gap (μm)	144.143	8.878	144.862
Contact thermal jump distance (µm)	1.515	1.488	1.525
Target thermal jump distance (μm)	1.350	1.329	1.358
Effective contact pressure (MPa)	0.000	0.000	0.000
Pressure index	13.534	13.534	13.534
Gas thermal conductivity (W/m⋅°C)	0.202	0.200	0.203
Solid spot conductance (W/m²·C)	0.000	0.000	0.000
Gas gap conductance (W/m²⋅C)	1412.162	1359.398	17128.494

Contact status codes:

0=open/no heat transfer, 1=near-field contact 2=closed and sliding, 3=closed and sticking

APPENDIX A2: FABRICATION REQUEST SHEETS

Capsule Fabrication Request Sheet

JULI01

Capsule Number:

Assembly

Fill Gas

Assembly Drawing Welding & Cleaning Drawing S18-39-GEN_TEN

X3E020977A633

Rev. Comment

0

Page 1 of 1 Date 9/19/2019

capsule Number.	JOLIOI					***********									
Irradiation Conditions		1000	1420			Approvals	D		Bjuild						
Irradiation Location		HT				Performed by:	Request	- 3/19/10	1) //	-//					
Design Temperature			300			renormed by.	110	23/19/19	V V.	W13/10					
First Cycle Goal	-		485			Checked by:		/ ,	In m	10/10/10					
Irradiation Time		0.5				Criecked by.	Kun	9/22/16	n n	9/23//7					
Irradiation Charge Number			N/A				,-	1153117	200	m					
Holder diameter	9.18	mm (0	.3614 in) at 20°C												
Fill Gas	N.		Helium		320										
Capsule Fabrication			Part	Material	Count	Comment	MAT IR	FAB IR	ID	Mass (g)					
Housing	Drawing X3E020977A634	Rev.	1	AL 6061	1	Comment	20930	20930	19-01	4.2881					
End Cap	X3E020977A634	C	2	AL 4047	1		20823	20850	18-70	0.6140					
Spring Pin	S18-39-GEN_TEN	0	91610A207	18-8 SS	3		20971	20971	3 Total	0.3926					
Wave Spring	S18-39-GEN_TEN	0	CM08-L3-S17	17-7 SS	2		20770	20770	2 Total	0.2523					
Holder	S18-39-GEN_TEN	0	2	Al 6061	3	OD =	20870	20939	19-01	1.2057					
	1339					9.18			19-02	1.2036					
				755800000			00001	20004	19-03	1.2075					
Chevron	S16-18-FUSSAM01	1	1	304 SS	16	ET-145 thru ET-160	20981	20981	16 Total 8 Total	1.7086 0.9915					
Chevron	S16-18-FUSSAM01	1	1	Cu	8	Cu-01 thru Cu-08	20982	20982	M10S 01	0.1674					
SSJ2 specimen	516-18-FUSSAM01	1	3	Steel	36		20991	20991	M105 01	0.1666					
							21020	21020	M115 08	0.1696					
							100000		M11S 09	0.1776					
									M11S 10	0.1611					
				Ni	7	1	21011	21011	M12N 01	0.2056					
									M12N 12	0.2065					
					2101	21012	21012	M13N 10	0.195						
								M13N 11	0.2021						
			L .		4		24240	24040	M13N 12	0.1951					
		1		Al			21019	21019	M1A 01 M1A 02	0.0566					
									M1A 03	0.0594					
							21018	21018	M2A 07	0.0575					
							100000000000000000000000000000000000000	22020	M2A 08	0.0579					
									M2A 09	0.0584					
	İ	İ	i -	Steel	_		21009	21009	M3S 01	0.1786					
				Steel			22003	22000	M3S 02	0.1781					
							21010	21010	M4S 06	0.1765					
									M4S 07	0.1788					
				Cu			21017	21017	M5C 01	0.2052					
									M5C 02	0.202					
									M5C 03	0.2021					
							20983	20983	M6C 02	0.1882					
									M6C 04 M6C 05	0.1911					
			H	Ni	-	1	21023	21023	M7N 01	0.1842					
				191			21023	21023	M7N 02	0.1729					
			F	Steel	-	1	21021	21021	M8S 01	0.167					
		1							M8S 02	0.172					
									M8S 03	0.1678					
							21022	21022	M9S08	0.1817					
					_			1	M9509	0.1643					
				Grade91			20985	20985	P1X1	0.1755					
														P1Z2 P2X3	0.1751 0.1742
	616 10 FH661101	1	7	SiC	12	081 thru 092	19759	20657	081	0.1742					
Thermometry	S16-18-FUSSAM01	1	/ 1	SIC	12	001 till 0002	,5700	23001	082	0.1002					
									083	0.1006					
									084	0.1003					
									085	0.1004					
									086	0.1008					
									087	0.1008					
									088	0.0976					
									089	0.0986					
									090	0.1003					
									091	0.0976					
									092	0.0951					
									total mass	18.8823					

Assembly

Assembly Drawing Welding & Cleaning Fill Gas

Capsule Number:	JULI02									
Irradiation Conditions						Approvals				
Irradiation Location		HT	7				Request		Byild	/
Design Temperature	-		300			Performed by:	NS	n 9/19/19	1/ 1//	abolit
First Cycle Goal			485			4	18	2(1 IM	1/25/10
Irradiation Time		0.5				Checked by:	B	2//		9/23/19
Irradiation Charge Number			N/A				Khu	9/23/19	was 2m	
madiation charge womber		- 400	AND THE RESERVE					.,		
Holder diameter	9.18	mm (0.	.3614 in) at 20°C		-					
Fill Gas			Helium							
Capsule Fabrication										
Capsule rabileation	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	C	1	AL 6061	1		20930	20930	19-02	4.2930
End Cap	X3E020977A634	С	2	AL 4047	1		20823	20350	18-72	0.6138
Spring Pin	S18-39-GEN_TEN	0	91610A207	18-8 SS	3		20971	20971	3 Total	0.3922
Wave Spring	S18-39-GEN_TEN	0	CM08-L3-S17	17-7 SS	2		20770	20770	2 Total	0.2544
Holder	S18-39-GEN_TEN	0	2	Al 6061	3	OD =	20870	20939	19-04	1.2079 1.2056
						9.18			19-05 19-06	1.2085
				20466	22	ET-161 thu ET-182	20981	20981	22 Total	2.3695
Chevron	\$16-18-FUSSAM01	1	1 1	304 SS Cu	22	Cu-09, Cu-10	20982	20982	2 Total	0.2447
Chevron	S16-18-FUSSAM01 S16-18-FUSSAM01	1	3	OFRAC	36	Cu-09, Cu-10	20984	20984	FD-01	0.1754
SSJ2 specimen	216-18-FU33AWU1	1	3	OFRAC	30		20304	2000	FD-02	0.1746
									FD-11	0.172
			l t	Steel	-		20991	20991	M10S 03	0.1753
									M10S 04	0.1794
									M10S 05	0.1656
							21020	21020	M115 11	0.1652
									M115 12	0.1754
			1	Ni			21011	21011	M12N 03	0.2044
								T	M12N 04	0.2073
									M12N 05	0.1998
]	l l				21012	21012	M13N 04	0.187
									M13N 05	0.2027
			[Al			21019	21019	M1A 04	0.0586
									M1A 05	0.0582
							21018	21018	M2A 10	0.0555
			1 1		_			24000	M2A 11	0.0586
1				Steel			21009	21009	M3S 03 M3S 04	0.1796
									M3S 05	0.1791
							21010	21010	M4S 08	0.1742
							21010	21010	M4S 09	0.1742
-									M4S 10	0.1748
			l	Cu	-		21017	21017	M5C 04	0.1992
				Cu			20983	20983	M6C 01	0.1966
			l 1	Ni			21023	21023	M7N 03	0.1745
									M7N 04	0.1845
									M7N 05	0.1755
				Steel			21021	21021	M8S 04	0.1686
									M8S 05	0.1666
1							21022	21022	M9S10	0.1754
									M9S11	0.1641
					_		2000-	20005	M9S12	0.1734
		1		Grade 91			20985	20985	P2Z1 P3X2	0.1777 0.1757
		1							P3X2 P3Z3	0.1757
	C4C 40 51/554455	-	-	SIC	12	093 thru 104	19759	20657	093	0.1002
Thermometry	S16-18-FUSSAM01	1	7	SIC	12	093 0110 104	13739	20007	C94	0.0981
									C95	0.1001
									C96	0.0974
									097	0.1004
		1					1		C98	0.0979
1									099	0.0982
									100	0.1000
									101	0.1007
									102	0.1008
									103	0.1003
									104	0.1008
						-			total mass	18.9749
									specimen mass	

Rev. Comment

Drawing S18-39-GEN_TEN

X3E020977A633

Capsule Number:	JULI03									
Irradiation Conditions						Approvals			n 1	
Irradiation Location		TRRH	6				Request		Build	
Design Temperature			300			Performed by:	ME	200/15/19	1 1/20	123/10
First Cycle Goal	<u> </u>		485			<	100	5	Jen In	6/6/
Irradiation Time		1	cyc.			Checked by:	12.	9/22/19	2	9/23/19
Irradiation Charge Number	AC		N/A				ICM	3/231/9	Lens	
Holder diameter	9.18	mm (0.	.3614 in) at 20°C							
Fill Gas			Helium							
Capsule Fabrication	Drawing	Rev.	Part	Material	Count	Comment	MAT IR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	C C	1	AL 6061	1	Comment	20930	20930	19-03	4.3022
End Cap	X3E020977A634	С	2	AL 4047	1		20823	20850	18-73	0.6159
Spring Pin	S18-39-GEN_TEN	0	91610A207	18-8 SS	3		20971	20971	3 Tctal	0.3911
Wave Spring	S18-39-GEN_TEN	0	CM08-L3-S17	17-7 SS	2		20770	20770 20939	2 Tctal 19-07	0.2527 1.2077
Holder	S18-39-GEN_TEN	0	2	Al 6061	3	OD = 9.18	20870	20939	19-08	1.2053
						9.10			19-09	1.2081
Chevron	S16-18-FUSSAM01	1	1	304 SS	16	ET-183 thru ET-198	20981	20981	16 Total	1.6991
Chevron	S16-18-FUSSAM01	1	1	Cu	8	Cu-11 thru Cu-18	20982	20982	8 Total	0.9964
SSJ2 specimen	S16-18-FUSSAM01	1	3	Steel	36		20991	20991	M10S 06	0.1715
100							21020	21020	M10S 07 M11S 13	0.1703 0.1776
							21020	21020	M115 13 M115 14	0.1776
1									M115 19	0.1689
				Ni	-		21011	21011	M12N 06	0.2044
-									M12N 07	0.1915
							21012	21012	M13N 01	0.1892
									M13N 02 M13N 03	0.20C3 0.1874
			-	Al	-		21019	21019	M1A 06	0.0474
				Al			21013	1 2223	M1A 07	0.0591
	1						1		M1A 16	0.0592
							21018	21018	M2A 12	0.0534
									M2A 15	0.0535
									M2A13	0.055
L.				Steel			21009	21009	M35 06	0.1774
f.		1					24040	21010	M3S 07 M4S 11	0.1794 0.1754
							21010	21010	M4S 12	0.1752
			l	Cu	\dashv		21017	21017	M5C 05	0.1975
				5.51			200000000000000000000000000000000000000	0.0000000000000000000000000000000000000	M5C 06	0.2105
									M5C 07	0.2047
							20983	20983	M6C 03	0.1951
									M6C 07 M6C 08	0.2071
				Ni	-		21023	21023	M7N 06	0.1742
	7/		1	TNI.		2	22020		M7N 07	0.1893
				Steel			21021	21021	M8S 06	0.171
			N 1						M8S 07	0.1633
		1					2100-	21022	M8S 10	0.1598
		1					21022	21022	M9513 M9514	0.1738
			-	Grade 91	-		20985	20985	P1K2	0.1742
				0.000 31			105500000	10000000	P1Z3	0.1743
									P2K1	0.1851
Thermometry	S16-18-FUSSAM01	1	7	SIC	12	106 thru 117	19759	20657	106	0.0995
									107 108	0.1006
									108	0.1008
									110	0.0982
									111	0.0988
									112	0.0983
									113	0.0984
									114	0.0983
									115	0.0980
									116 117	0.0983
									total mass	18.8929
									specimen mass	
									specimen mass	5.8243

Assembly			12	
	Drawing	Rev.	Comment	
Assembly Drawing	S18-39-GEN_TEN	0		
Welding & Cleaning	X3E020977A633	2		
EIII Gas			Helium	

Assembly

Assembly Drawing
Welding & Cleaning
Fill Gas

Capsule Number:	JULI04									
Irradiation Conditions						Approvals				
Irradiation Location		TRRH					Request	m 0/	Bulld	a / /
Design Temperature			300			Performed by:	NOS	2 9/19/19	V V	1/23/11
First Cycle Goal			485			et ashed how	1-2	1 .	Jec 14	9/20/10
Irradiation Time		1				Checked by:	Vin a	28/16	20	1/21/19
Irradiation Charge Number			N/A				10, 4	1 -0119	corry	
Holder diameter	9.18	mm (0	.3614 in) at 20°C							
Fill Gas		2.17.23.14.0	Helium							
Capsule Fabrication										
- Capana - Canana - Capana - C	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	С	1	AL 6061	1		20930	20930	19-04	4.3047
End Cap	X3E020977A634	C	2	AL 4047 18-8 SS	3		20823 20971	20850 20971	18-74 3 Total	0.6154 0.3912
Spring Pin Wave Spring	S18-39-GEN_TEN S18-39-GEN_TEN	0	91610A207 CM08-L3-S17	17-7 SS	2		20770	20770	2 Total	0.2535
Holder	518-39-GEN_TEN	0	2	Al 6061	3	OD =	20870	20939	19-10	1.2066
1000000	-	8				9.18			19-11	1.2053
								20001	19-13	1.2074
Chevron	S16-18-FUSSAM01	1	1	304 SS	22	ET-199 thru ET-220	20981 20982	20981 20982	22 Total 2 Total	2.3691 0.2376
Chevron	S16-18-FUSSAM01 S16-18-FUSSAM01	1	3	Cu OFRAC	36	Cu-19, Cu-20	20982	20982	FD-04	0.2376
SSJ2 specimen	210-10-1033WM01	1	,	OTRAC	33		2000/		FD-06	0.1779
									FD-12	0.1776
			[Steel			20991	20991	M1CS 09	0.1744
									M1CS 10 M1CS 16	0.1707 0.171
							21020	21020	M11S 16	0.171
							22020	Lione	M11S 17	0.173
			1	Ni	7		21011	21011	M12N 08	0.2006
									M12N 09	0.2018
							24042	21012	M12N 10	0.2046
							21012	21012	M13N 13 M13N 20	0.192
				Al	-		21019	21019	M1A 09	0.0562
							100000000	7,000,000,000	M1A 10	0.0588
							21018	21018	M2A 16	0.0562
		1	1	Steel	-		21009	21009	M2A 17 M35 08	0.0568 0.1814
				Steel			21009	21009	M35 09	0.1775
									M35 10	0.1784
							21010	21010	M45 13	0.1757
									M45 14	0.1769 0.1762
				Cu	-		21017	21017	M45 15 M50 08	0.1762
				Cu			20983	20983	M6C 09	0.2024
				NI	1		21023	21023	M7N 08	0.1865
									M7N 09	0.1853
					_				M7N 10	0.1758
			1 1	Steel			21021	21021	M85 12 M8513	0.1726 0.1633
							21022	21022	M9506	0.1654
								100 DECEMBER	M9S15	0.1712
									M9S17	0.1677
				Grade 91			20985	20985	P2Z2	0.1752
									P3X3 P3Z1	0.1796 0.1784
Thermometry	S16-18-FUSSAM01	1	7	SIC	12	118, 119, 153, 121	19759	20357	118	0.0984
Hermometry	510 10 1 055 AVIOT				1	thru 129	305555		119	0.1007
								1	120	0.1012
									121	0.1001
									122	0.1005
									124	0.1008
									125	0.1003
	16								126	0.1002
									127	0.1006
									128	0.0999
7									129	0.1000
									total mass	19.0158
									specimen mass	6.0215

Rev. Comment

Helium

Drawing S18-39-GEN_TEN

X3E020977A633

Assembly

Assembly Drawing
Welding & Cleaning
Fill Gas

Capsule Number:	JULI05									
Irradiation Conditions						Approvals				
Irradiation Location		TRRH	6			1000	Request		○ Byild	1 1
Design Temperature			300			Performed by:	N1-2	2 9/19/15	1111111	102/1
First Cycle Goal			485			-	1	2	10,14	125/11
Irradiation Time		2	cyc.			Checked by:	1	1 1		9/23/15
Irradiation Charge Number			N/A				Km 9	123/15	wessy	-
Holder diameter	9.18	mm (0	.3614 in) at 20°C		_=					
FIII Gas			Helium							
Capsule Fabrication										
7/1	Drawing	Rev.	Part	Material	Count	Comment	MAT IR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	С	1	AL 6061 AL 4047	1		20930 20823	20930 20850	19-05 18-75	4.3060 0.6156
End Cap Spring Pin	X3E020977A634 S18-39-GEN_TEN	0	91610A207	18-8 SS	3		20023	20830	3 Total	0.8136
Wave Spring	S18-39-GEN_TEN	0	CM08-L3-S17	17-7 SS	2		20770	20770	2 Tctal	0.0269
Holder	518-39-GEN_TEN	0	2	Al 6061	3	OD =	20870	20939	19-14	1.2077
	**************************************	8.450			1,000	9.18		554260365	19-15	1.206
									19-16	1.2065
Chevron	S16-18-FUSSAM01	1	1	304 SS	16	ET-221 thru ET-236	20981	20981	16 Total	1.7018
Chevron	S16-18-FUSSAM01	1	1	Cu	8	Cu-21 thru Cu-28	20982	20982	8 Tctal M10S 11	0.9944
SSJ2 specimen	S16-18-FUSSAM01	1	3	Steel	36		20991	20991	M105 12	0.1748
							21020	21020	M11S 04	0.1621
									M11S 05	0.1744
									M11S 18	0.1755
			1	Ni			21011	21011	M12N 17	0.2078
									M12N 18	0.2031
							21012	21012	M13N 06	0.2011
									M13N 07	0.1983
			l +	Al	-		21019	21019	M13N 15 M1A 11	0.1855 0.0561
				OI.			21015	21015	M1A 12	0.0576
									M1A 13	0.0598
							21018	21018	M2A 01	0.0586
									M2A 02	0.0551
									M2A 03	0.0564
		1		Steel			21009	21009	M3S 11	0.1761
							21018	21018	M1A 13 M2A 01	0.0598
							21016	21016	M2A 02	0.0551
									M2A 03	0.0564
				Steel			21009	21009	M3S 11	0.1761
							50350503	0.000	M3S 12	0.1798
							21010	21010	M4S 01	0.1761
			l -	Cu	-		21017	21017	M4S 02 M5C 09	0.175
				Cu			21017	21017	M5C 10	0.1898
									M5C 11	0.2049
							20983	20983	M6C 10	0.1999
									M6C 12	0.1846
									M6C 13	0.1977
				Ni			21023	21023	M7N 11	0.1722
			-	Cp1	-		21021	21021	M7N 12	0.1875
				Steel			21021	21021	M8S 15 M8S 16	0.1652 0.1712
									M85 17	0.1712
							21022	21022	M9518	0.1719
									M9519	0.1773
				Grade 91	1		20985	20985	P1X3	0.179
									P1Z1	0.1782
*1	S16-18-FUSSAM01	-	7	SIC	12	105, 130 thru 133,	19759	20657	P2X2 130	0.1718
Thermometry	S16-18-FUSSAM01	1	'	SIC	12	135 thru 141	19759	20657	131	0.0994
						133 mid 141			132	0.1004
									133	0.0988
									105	0.1004
									135	0.0981
									136	0.0985
									137	0.0984
									138	0.1000
									139	0.0983
									140	0.0976
		_							141	18.6821
									total mass	
									specimen mass	5.8377

Rev. Comment
0
2

Drawing S18-39-GEN_TEN X3E020977A633

Capsule Number:	JULI06									
Irradiation Conditions						Approvals				
Irradiation Location		TRRH	6				Request		Build	01 /
Design Temperature			300			Performed by:	MI	23/19/19	I V //	abolid
First Cycle Goal	(d)		485				100		De 191	1/21/19
Irradiation Time		2	cyc.			Checked by:	1	1-21.	0	1/23/19
Irradiation Charge Number			N/A				1cm	9123119	Lakung 55	mi
Holder diameter	9.18	mm (0.	.3614 in) at 20°C							
Fill Gas			Helium							
Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MAT IR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	С	1	AL 6061	1	350000000000000000000000000000000000000	20930	20930	19-06	4.2904
End Cap	X3E020977A634	C	2	AL 4047	1		20823	20850	18-76	0.6167
Spring Pin	S18-39-GEN_TEN	0	91610A207	18-8 SS	3		20971	20971	3 Total 2 Total	0.3934
Wave Spring Holder	S18-39-GEN_TEN S18-39-GEN_TEN	0	CM08-L3-S17	17-7 SS Al 6061	3	OD =	20770 20870	20770 20939	19-18	1.208
Holder	210-23-GEN_1EN	0		AI GOOT	-	9.18	20070	20000	19-19	1.2089
						5.20			19-20	1.2094
Chevron	S16-18-FUSSAM01	1	1	304 SS	22	ET-237 thru ET-258	20981	20981	22 Total	2.3516
Chevron	S16-18-FUSSAM01	1	1	Cu	2	Cu-29, Cu-30	20982	20982	2 Total	0.2495
SSJ2 specimen	S16-18-FUSSAM01	1	3	OFRAC	36		20984	20984	FD-03	0.1769
									FD-07	0.178
					- 2		20001		FD-10	0.1787
				Steel			20991	20991	M105 13 M105 14	0.1775
									M10S 15	0.171
							21020	21020	M115 06	0.1743
									M115 07	0.1563
				Ni			21011	21011	M12N 13	0.2045
									M12N 14	0.2051
								4	M12N 15	0.2039
							21012	21012	M13N 08	0.2081
			3	*1	_		21019	21019	M13N 09 M1A 14	0.1849
				Al			21019	21019	M1A.15	0.0569
							21018	21018	M2A.05	0.0588
									M2A 19	0.0591
			I [Steel			21009	21009	M35 13	0.1787
									M35 14	0.1793
									M35 15	0.1764
							21010	21010	M45 03 M45 04	0.1754
		1							M45 05	0.1744
			l	Cu	-		21017	21017	M5C 12	0.2074
				Cu			20983	20983	M6C 14	0.2009
				Ni			21023	21023	M7N 13	0.1827
									M7N 14	0.1708
			L		_				M7N 15	0.1855
				Steel			21021	21021	M85 19	0.1683
							21022	21022	M85 20 M9520	0.1642 0.1711
							21022	21022	M9520 M9521	0.1711
									M9522	0.1717
				Grade 91	-		20985	20985	P2Z3	0.1756
	5.			eranoviā.			100000000000000000000000000000000000000	WORKSON, I	P3X1	0.1865
									P3Z2	0.1791
Thermometry	S16-18-FUSSAM01	1	7	SiC	12	142 thru 152, 154	19759	20657	142	0.0984
									143	0.1004
									144 145	0.0991
									145	0.1004
									147	0.1009
									148	0.1000
									149	0.1005
									150	0.1009
									151	0.1009
									152	0.1011
									153	0.1009
									total mass	19.0024
									specimen mass	6.0195

A	55	e	r	n	b	ŀ

	Drawing	Rev.	Comment	
Assembly Drawing	S18-39-GEN_TEN	0		
Welding & Cleaning	X3E020977A633	2		
Fill Gas			Helium	